Code No: **N0221** 



Set No. 1

## IV B.Tech I Semester Supplementary Examinations, March – 2017 NEURAL NETWORKS AND FUZZY LOGIC

#### (Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 80

### Answer any FIVE Questions All Questions carry equal marks

\*\*\*\*\*

| 1 | a)<br>b) | Explain with neat sketch the McCulloch-Pitts model of artificial neural network?<br>Compare the biological and artificial neuron models?                                                                                                                                                                                                                                                                              | [8]<br>[8] |
|---|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 2 |          | What are the learning strategies? Explain any two?                                                                                                                                                                                                                                                                                                                                                                    | [8]        |
|   | b)       | Describe the activation dynamic models?                                                                                                                                                                                                                                                                                                                                                                               |            |
| 3 | a)       | Discuss the working of single layer perceptron and multilayer perceptron with relevant algorithm and compare them.                                                                                                                                                                                                                                                                                                    | [10]       |
|   | b)       | Write about the applications of perceptron model?                                                                                                                                                                                                                                                                                                                                                                     | [6]        |
| 4 | a)       | The optimum number of hidden layers in back propagation is two justify? What happens if number of hidden layers increases? Explain.                                                                                                                                                                                                                                                                                   | [10]       |
|   | b)       | What are the limitations of back propagation algorithm?                                                                                                                                                                                                                                                                                                                                                               | [6]        |
| 5 | a)       | Differentiate between discrete time Hop- field network and continuous type Hopfield network.                                                                                                                                                                                                                                                                                                                          | [8]        |
|   | b)       | With suitable examples, explain different types of associative memories.                                                                                                                                                                                                                                                                                                                                              | [8]        |
| 6 | ,        | Define membership? What are different types of membership functions with neat schematic?                                                                                                                                                                                                                                                                                                                              | [8]        |
|   | b)       | Let $\tilde{R} = \begin{bmatrix} 0.4 & 0.3 \\ 0.1 & 0.9 \\ 0.8 & 0.5 \end{bmatrix}$ be a fuzzy relation on X={x <sub>1</sub> , x <sub>2</sub> , x <sub>3</sub> }, Y={y <sub>1</sub> , y <sub>2</sub> } and<br>$\tilde{S} = \begin{bmatrix} 0.5 & 0.4 & 0.6 \\ 0.3 & 0.5 & 0.7 \end{bmatrix}$ be a fuzzy relation on Y={y <sub>1</sub> , y <sub>2</sub> }, Z={z <sub>1</sub> , z <sub>2</sub> , z <sub>3</sub> }. Find |            |
|   |          | $\tilde{S} = \begin{bmatrix} 0.5 & 0.4 & 0.6 \\ 0.3 & 0.5 & 0.7 \end{bmatrix}$ be a fuzzy relation on Y={y <sub>1</sub> , y <sub>2</sub> }, Z={z <sub>1</sub> , z <sub>2</sub> , z <sub>3</sub> }. Find RoS by max-min composition?                                                                                                                                                                                   | [8]        |
| 7 | a)       | Discuss any two membership value assignment?                                                                                                                                                                                                                                                                                                                                                                          | [8]        |
|   | b)       | How do you convert a fuzzy set to single crisp value and discuss the methods to be used?                                                                                                                                                                                                                                                                                                                              | [8]        |
| 8 |          | Describe how a neural network may be trained for a load forecasting task.<br>Illustrate with an example.                                                                                                                                                                                                                                                                                                              | [16]       |

#### 1 of 1

# WWW.MANARESULTS.CO.IN

|"|""||"|||