I B. Tech II Semester Supplementary Examinations April/May - 2017

MATHEMATICS-II

(Common to All Branches)

Time: 3 hours

Max. Marks: 75

Answer any FIVE Questions All Questions carry equal marks

* * * * *

1. (a) Find the Laplace transform of unit step function.

(b) Find the L[1-cost/t].

[7+8]

2. (a) Find L⁻¹ $\left\{ \log \left(\frac{s+1}{s-1} \right) \right\}$.

(b) Solve $(D^2 + 2D - 3)y = sint$; y(0) = y'(0) = 0, using Laplace transforms.

[7+8]

3. (a) Expand $\frac{\pi^2}{12} - \frac{x^2}{4}$ as a Fourier series in $(-\pi, \pi)$.

(b) Find the Half range cosine series of f(x) = 4x in [0, 2].

[8+7]

4. (a) Prove that $F\{x^n f(x)\} = (-i)^n \frac{d^n}{dp^n} [F(p)]$

(b) Find finite Fourier cosine transform of f(x) = x + a for $0 < x < \pi$.

[8+7]

5. (a) Form the P.D.E. by eliminating ϕ from $\phi(x+y+z, x^2+y^2-z^2)=0$.

(b) Solve (y + z)p - (z + x)q = x - y.

[7+8]

6. Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, subject to the conditions u(0, y) = u(l, y) = u(x, 0) = 0 and $u(x, a) = \sin \frac{n\pi x}{l}$. [15]

7. (a) Find u_2 , u_3 if $\overline{u}(z) = \frac{(2z^2 + 5z + 14)}{(z-1)^4}$.

(b) Find the inverse Z- transform of $\frac{4z^2-2z}{z^3-5z^2+8z-4}$.

[7+8]

8. (a) Show that $\beta(m,n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx = \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} dx$

(b) Evaluate $4\int_{0}^{\infty} \frac{x^2}{1+x^4} dx$ using beta gamma function.

[8+7]

Page 1 of 1