

SET-1

I B. Tech II Semester Supplementary Examinations, Nov/Dec - 2018 MATHEMATICS-II

(Com. to All Branches)

Time:	3 hours Max. Marks: 75	
	Answer any FIVE Questions	
	All Questions carry Equal Marks	
. a)	Evaluate $\int_0^\infty \frac{e^{-t} - e^{-3t}}{t} dt$	(8
b)	Find the Laplace transform of $f(t) = \begin{cases} \cos t & 0 < t < \pi \\ \sin t & t > \pi \end{cases}$	(
2. a)	Find $L^{-1}\left\{\frac{s+2}{(s^2+4s+8)(s^2+4s+13)}\right\}$	(8
b)	Solve the ODE $y''' + y = 1$, $y(0) = y'(0) = y''(0) = 0$ using Laplace transform	(
	method.	
. a)	Find the Half range cosine series of $f(x) = (x - 1)^2$	(
b)	Expand sinhax as a Fourier series in $(-\pi, \pi)$	(
. a)	Find finite Fourier cosine transform of $f(x) = x + a$ for $0 < x < \pi$	(
b)	Find f(x) if $F_c(p) = \frac{\sin ap}{p}$	(
. a)	A bar of 50cm long with insulated sides kept at 0^{0} C and that the other end is kept at 100^{0} C until steady state conditions prevail. The two ends are suddenly insulated so that the temperature is zero at each end thereafter. Find the temperature distribution.	(8
b)	Solve the PDE $\frac{\partial u}{\partial y} - 2\frac{\partial u}{\partial y} = u$ and $u(x,0) = 3e^{-5x} + 2e^{-3x}$	(
. a)	Evaluate $Z^{-1}\left[\frac{z^2}{(z-1)(z-3)}\right]$, using convolution theorem.	(8
b)	Find Z(2.3 ⁿ + 5.n) and deduce Z[2.3 ⁿ⁺³ + 5(n+3)] using shifting theorem.	(°
. a)	Solve the following PDE $(3z - 4y)p + (4x - 2y)q = 2y - 3x$	(8
b)	Form the differential equation by elimination arbitrary function	(
	$\phi(x^2 + y^2 + z^2, xyz) = 0$	
s. a)	Show that $\beta(m,n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx = \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} dx$	(8
b)	Evaluate $\int_{0}^{\infty} x^{n-1} e^{-ax} \cos bx dx$	(

WWW.MANARESULTS.CO.IN

|"|""||"|||