



## I B. Tech II Semester Supplementary Examinations, April/May - 2018 ENGINEERING PHYSICS-II

(Com. to All Branches)

| Time: 3 hours Ma                                                           |    |                                                                                                                                                              | x. Marks: 75 |  |
|----------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| Answer any <b>FIVE</b> Questions<br>All Questions carry <b>Equal</b> Marks |    |                                                                                                                                                              |              |  |
| 1.                                                                         | a) | Arrive at the time-independent form of Schrödinger's equation for free electrons in a metal. Write a note on the physical significance of the wave function. | (10M)        |  |
|                                                                            | b) | Discuss advantages of quantum computing over classical computation.                                                                                          | (5M)         |  |
| 2.                                                                         | a) | Discuss the assumptions under quantum free electron theory. Obtain the expression for electrical conductivity on the basis of quantum free electron theory.  | (10M)        |  |
|                                                                            | b) | Outline the important drawbacks of the classical free electron.                                                                                              | (5M)         |  |
| 3.                                                                         | a) | Classify solids into three categories on the basis of band theory of solids.                                                                                 | (10M)        |  |
|                                                                            | b) | What is an energy band? Explain how they are formed in solids.                                                                                               | (5M)         |  |
| 4.                                                                         | a) | Briefly explain different types of magnetic materials and their properties.                                                                                  | (10M)        |  |
|                                                                            | b) | Differentiate a soft magnetic material from a hard magnetic material.                                                                                        | (5M)         |  |
| 5.                                                                         | a) | Explain any five properties of superconductors.                                                                                                              | (10M)        |  |
|                                                                            | b) | Discuss applications of superconductors.                                                                                                                     | (5M)         |  |
| 6.                                                                         | a) | Derive an expression for electronic polarizability in dielectric material.                                                                                   | (10M)        |  |
|                                                                            | b) | Elucidate the various types of dielectric breakdown in dielectric material.                                                                                  | (5M)         |  |
| 7.                                                                         | a) | Derive an expression for concentration of holes in intrinsic semiconductors.                                                                                 | (10M)        |  |
|                                                                            | b) | Discuss the effect of donor and acceptor impurities in semiconductors.                                                                                       | (5M)         |  |
| 8.                                                                         |    | Describe the mechanical, chemical and magnetic properties of nanoparticles.                                                                                  | (15M)        |  |

## 1 of 1

## www.ManaResults.co.in