Subject Code: R13202/R13 I B. Tech II Semester Supplementary Examinations Feb. - 2015

MATHEMATICS-III

(Common to All Branches)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

- 1.(i) Define Echelon form of a matrix?
 - (ii) Prove that zero is an eigen value of a matrix iff it is singular?
 - (iii) Find the complete area of the curve $a^2y^2 = x^3(2a x)$
 - (iv) Evaluate $\int_0^{1/3} \sqrt{\log \frac{1}{x} dx}$
 - (v) Write the physical significance of grad φ .
 - (vi) Write the physical interpretation of surface integrals.

[4+4+4+4+3+3]

<u>PART- B</u>

- 2.(a) Evaluate $\oint_c (2x^2 y^2)dx + (x^2 + y^2)dy$ by using Green's theorem where C is the boundary of the surface in the xy plane enclosed by x-axis and the semi-circle.
 - (b) Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ to the canonical form.

3.(a) Solve by Gauss – Seidal method, the equations 9x - 2y + z - t = 50 x - 7y + 3z + t = 20 -2x + 2y + 7z + 2t = 22 x + y - 2z + 6t = 18(b) Evaluate the angle between the number of the transformation of the

(b) Evaluate the angle between the normals to the surface $xy = z^2$ at the points (4, 1, 2) and (3, 3, -3).

[8+8]

[8+8]

- 4.(a) Find the surface got by rotating one loop of the curve $r^2 = a^2 \cos 2\theta$.
 - (b) Determine the rank of a matrix $A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ by reducing it to normal form. [8+8]

5.(a) Trace the curve
$$a^2y^2 - x^2(a^2 - x^2) = 0$$
.
(b) Evaluate $\int_0^\infty \frac{x^8(1-x^6)}{(1+x)^{24}} dx$. [8+8]

Page 1 of 2

WWW.MANARESULTS.CO.IN

1"1"111"1""111"1

- 6.(a) If f, g are scalar fields, show that $\nabla f \times \nabla g$ is solenoidal.
 - (b) Find the moment of inertia of the area bounded by the curve $r^2 = a^2 \cos 2\theta$ about its axis.

[6+10]

[8+8]

- 7.(a) Determine the natural frequencies and normal modes of vibrating system for which $M = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and stiffness $K = \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix}$.
 - (b) Test for consistency and solve x + y = 0; y + z = 0; z + x = 0.

Page 2 of 2

WWW.MANARESULTS.CO.IN

|"|"|||"|"|||||

Set No - 2

Max. Marks: 70

I B. Tech II Semester Supplementary Examinations Feb. - 2015 MATHEMATICS-III

(Common to All Drenchos)

Time: 3 hours

(Common to All Branches)

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

- 1.(i) Define normal form of a matrix?
 - (ii) Prove that λ is an eigen value of a non-singular matrix A, show that $\frac{|A|}{\lambda}$ is an eigen value of Adj. A?
 - (iii) Find the perimeter of the curve $y^2 + x^2 = a$?
 - (iv) Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cot\theta} \, d\theta$
 - (v) Define Directional Derivative.
 - (vi) Write the statement of Stoke's theorem.

[4+4+4+3+3]

[8+8]

[8+8]

PART- B

- 2.(a) Reduce A to canonical form and find its rank, if $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$
 - (b) Trace the curve $y = \frac{x^2+1}{x^2-1}$
- 3.(a) Evaluate $\iiint_V (2x + y) dv$ where *V* is the closed region bounded by the cylinder $z = 4 x^2$ and the planes x = 0, y = 2 and z = 0.
 - (b) Show that $\int_0^\infty \frac{x^{m-1}}{(a+bx)^{m+n}} dx = \frac{\beta(m,n)}{a^n b^m}$
- 4. Find a non-singular matrix **P** such that **A** is diagonalizable, where $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$. Hence diagonalise **A**.

WWW.MANARESULTS.CO.IN

|"|"|||"|"|||

Set No - 2

- 5.(a) If A and B are n rowed square matrices and if A is invertible show that $A^{-1}B$ and BA^{-1} have same Eigen Values.
 - (b) Find the current in each cell considering the circuit given below

[8+8]

- 6.(a) Find the moment of inertial of the area of a circle A of radius R relative to the centre O.
- (b) If $A = z^2 i + x^2 j y^2 zk$, and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = -5, evaluate $\iint_S A \cdot n \, ds$

[6+10]

- 7.(a) Find the total work done by a force F = 2xyi 4zj + 5xk along the curve $x = t^2, y = 2t + 1, z = t^3$, from the points t = 1, t = 2.
 - (b) Evaluate $\int_0^2 (8-x^3)^{-\frac{1}{3}} dx$ using $\beta \Gamma$ functions.

[8+8]

|"|"|||"|"|||

Page 1 of 2 WWW.MANARESULTS.CO.IN

1"1"111"1"1111

Set No - 3 Subject Code: R13202/R13 I B. Tech II Semester Supplementary Examinations Feb. - 2015 **MATHEMATICS-III**

(Common to All Branches)

Time: 3 hours

Question Paper Consists of Part-A and Part-B Answering the question in **Part-A** is Compulsory, Three Questions should be answered from Part-B ****

PART-A

- Define Rank of a matrix? 1.(i)
 - (ii) Prove that every Hermitian matrix can be written as A+iB, where A is real and symmetric and B is real and skew-symmetric.
 - (iii) Define Gamma function.
 - (iv) Evaluate $\nabla^2(\log r)$
 - (v) Define asymptote.
 - (vi) Write the statement of Divergence theorem.

[4+4+4+3+3]

PART-B

- Reduce A to normal form and find its rank, if $A = \begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & 5 \\ 1 & 3 & 2 & 0 \\ 1 & 1 & 2 & 0 \end{bmatrix}$ 2.(a)
 - (b) Trace the curve $r = a \sin 2\theta$
- 3.(a) Evaluate $\iiint_{v} f dv$ where $f = 45x^2y$ and V is the closed region bounded by the planes 4x + 2y + z = 8, x = 0, y = 0 and z = 0.
- (b) Solve the system of equations 10x - y - z = 13; x + 10y + z = 36; -x - y + 10z = 35. Find a non-singular matrix **P** such that **A** is diagonalizable, where $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$. 4. Hence diagonalzie A.

Max. Marks: 70

[8+8]

[16]

Set No - 3

- If A and B are n rowed square matrices and if A is invertible show that $A^{-1}B$ and BA^{-1} have 5.(a) same Eigen Values.
 - (b) Find the current in each cell considering the circuit given below

[8+8]

- Find the perimeter of the loop of the curve $3ay^2 = x^2(a x)$. 6.(a)
- Find the work done in moving a particle in the force field $F = 2x^2i + (2yz x)j yk$, (b) along
 - (i) the straight line from (0, 0, 0) to (3, 1, 2)
 - (ii) the space curve $x = 3t^2$, y = t, $z = 3t^2 t$ from t=0 to t=1.

[6+10]

[8+8]

- 7.(a) Test the following system for consistency and if consistent solve it u + 2v + 2w = 1; 2u + v + w = 2; 3u + 2v + 2w = 3; v + w = 0
 - Evaluate $\int_{0}^{\frac{\pi}{8}} \sin^{4} 8\theta \cos^{6} 4\theta \, d\theta$. (b)

Page 2 of 2 WWW.MANARESULTS.CO.IN

1"1"111"1"1111

Subject Code: R13202/R13 I B. Tech II Semester Supplementary Examinations Feb. - 2015

MATHEMATICS-III

(Common to All Branches)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

- 1.(i) Write the *Krichoff's* laws.
 - (ii) Write the statement of *Cayley-Hamilton* theorem.
 - (iii) Write the relation between *Beta* and *Gamma* functions.
 - (iv) State irrotational and solenoidal vectors
 - (v) Write the statement of *Sylvester's* law of inertial.
 - (vi) Define latent roots and vectors.

PART- B

- 2.(a) Evaluate $\oint_c (2xy x^2)dx + (x + y^2)dy$ where C is the closed curve in xy plane bounded by the curves $y = x^2$ and $y^2 = x$..
 - (b) Determine the Eigen values and Eigen vectors of $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$
- 3.(a) Solve the equations 2x - y + 3z - 9 = 0 x + y + z = 6 x - y + z - 2 = 0
 - (b) Find the area of the curve $r^2 = a^2 \sin 2\theta$.
- 4.(a) Find the unit normal to the surface xy + yz + zx = 3 at the point (1, 1, 1).
 - (b) Determine the rank of a matrix $A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ by reducing it to normal form. [8+8]
- 5.(a) Trace the curve $y(a^2 + x^2) = a^2 x$.
 - (b) Evaluate $\int_0^\infty \frac{x^8(1-x^6)}{(1+x)^{24}} dx$.

Page 1 of 2 WWW.MANARESULTS.CO.IN

1"1"111"1"1111

 $y = x^2$ and $y^2 = x$.. lues and Eigen vectors of $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \end{bmatrix}$

5

[8+8]

[4+4+4+3+3]

[8+8]

[8+8]

- 6.(a) If f, g are scalar fields, show that $\nabla f \times \nabla g$ is solenoidal.
 - (b) Find the moment of inertia of a hallow sphere about a diameter. Its external and internal radii being 5 meters and 4 meters.

[6+10]

- 7.(a) Determine the natural frequencies and normal modes of vibrating system for which $M = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$ and stiffness $K = \begin{bmatrix} 6 & -2 \\ -2 & 9 \end{bmatrix}$.
 - (b) Verify *Cayley-Hamiltion* theorem for $A = \begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix}$

[8+8]

Page 2 of 2

WWW.MANARESULTS.CO.IN

|"|"|||"|"|||||