Subject Code: R13202/R13

Set No - 1

I B. Tech II Semester Supplementary Examinations Feb. - 2015 MATHEMATICS-III
 (Common to All Branches)

Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Define Echelon form of a matrix?
(ii) Prove that zero is an eigen value of a matrix iff it is singular?
(iii) Find the complete area of the curve $a^{2} y^{2}=x^{3}(2 a-x)$
(iv) Evaluate $\int_{0}^{1} \sqrt[3]{\log \frac{1}{x} d x}$
(v) Write the physical significance of $\operatorname{grad} \varphi$.
(vi) Write the physical interpretation of surface integrals.

PART-B

2.(a) Evaluate $\oint_{c}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ by using Green's theorem where C is the boundary of the surface in the xy plane enclosed by x-axis and the semi-circle.
(b) Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to the canonical form.
3.(a) Solve by Gauss - Seidal method, the equations
$9 x-2 y+z-t=50$
$x-7 y+3 z+t=20$
$-2 x+2 y+7 z+2 t=22$
$x+y-2 z+6 t=18$
(b) Evaluate the angle between the normals to the surface $x y=z^{2}$ at the points $(4,1,2)$ and (3, 3, -3).
4.(a) Find the surface got by rotating one loop of the curve $r^{2}=a^{2} \cos 2 \theta$.
(b) Determine the rank of a matrix $A=\left[\begin{array}{cccc}-2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1\end{array}\right]$ by reducing it to normal form.
5.(a) Trace the curve $a^{2} y^{2}-x^{2}\left(a^{2}-x^{2}\right)=0$.
(b) Evaluate $\int_{0}^{\infty} \frac{x^{8}\left(1-x^{6}\right)}{(1+x)^{24}} d x$.

Page 1 of 2

WWW.MANARESULTS.CO.IN

Subject Code: R13202/R13

6.(a) If f, g are scalar fields, show that $\nabla f \times \nabla g$ is solenoidal.
(b) Find the moment of inertia of the area bounded by the curve $r^{2}=a^{2} \cos 2 \theta$ about its axis.
7.(a) Determine the natural frequencies and normal modes of vibrating system for which $M=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and stiffness $K=\left[\begin{array}{cc}2 & -1 \\ -1 & 3\end{array}\right]$.
(b) Test for consistency and solve $x+y=0 ; y+z=0 ; z+x=0$.

Subject Code: R13202/R13

Set No - 2

I B. Tech II Semester Supplementary Examinations Feb. - 2015 MATHEMATICS-III
 (Common to All Branches)

Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Define normal form of a matrix?
(ii) Prove that λ is an eigen value of a non-singular matrix A, show that $\frac{|A|}{\lambda}$ is an eigen value of $A d j$. A ?
(iii) Find the perimeter of the curve $y^{2}+x^{2}=a$?
(iv) Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\cot \theta} d \theta$
(v) Define Directional Derivative.
(vi) Write the statement of Stoke's theorem.

PART-B

2.(a) Reduce A to canonical form and find its rank, if $A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$
(b) Trace the curve $y=\frac{x^{2}+1}{x^{2}-1}$
3.(a) Evaluate $\iiint_{V}(2 x+y) d v$ where V is the closed region bounded by the cylinder $z=4-x^{2}$ and the planes $x=0, y=2$ and $z=0$.
(b) Show that $\int_{0}^{\infty} \frac{x^{m-1}}{(a+b x)^{m+n}} d x=\frac{\beta(m, n)}{a^{n} b^{m}}$
4. Find a non-singular matrix \boldsymbol{P} such that \boldsymbol{A} is diagonalizable, where $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$. Hence diagonalise \boldsymbol{A}.

Page 1 of 2

Subject Code: R13202/R13

5.(a) If A and B are n rowed square matrices and if A is invertible show that $A^{-1} B$ and $B A^{-1}$ have same Eigen Values.
(b) Find the current in each cell considering the circuit given below

6.(a) Find the moment of inertial of the area of a circle A of radius R relative to the centre O .
(b) If $A=z^{2} i+x^{2} j-y^{2} z k$, and S is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=-5$, evaluate $\iint_{S} \boldsymbol{A} . \boldsymbol{n} d s$
7.(a) Find the total work done by a force $F=2 x y i-4 z j+5 x k$ along the curve $x=t^{2}, y=2 t+1, z=t^{3}$, from the points $t=1, t=2$.
(b) Evaluate $\int_{0}^{2}\left(8-x^{3}\right)^{-\frac{1}{3}} d x$ using $\beta-\Gamma$ functions.

Subject Code: R13202/R13
 Set No - 3
 I B. Tech II Semester Supplementary Examinations Feb. - 2015 MATHEMATICS-III
 (Common to All Branches)

Time: 3 hours

Max. Marks: 70
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Define Rank of a matrix?
(ii) Prove that every Hermitian matrix can be written as $A+i B$, where A is real and symmetric and B is real and skew-symmetric.
(iii) Define Gamma function.
(iv) Evaluate $\nabla^{2}(\log r)$
(v) Define asymptote.
(vi) Write the statement of Divergence theorem.
$[4+4+4+4+3+3]$
PART-B
2.(a) Reduce A to normal form and find its rank, if $A=\left[\begin{array}{cccc}1 & 0 & -3 & 2 \\ 0 & 1 & 4 & 5 \\ 1 & 3 & 2 & 0 \\ 1 & 1 & -2 & 0\end{array}\right]$
(b) Trace the curve $r=a \sin 2 \theta$
3.(a) Evaluate $\iiint_{V} f d v$ where $f=45 x^{2} y$ and \boldsymbol{V} is the closed region bounded by the planes $4 x+2 y+z=8, x=0, y=0$ and $z=0$.
(b) Solve the system of equations $10 x-y-z=13 ; x+10 y+z=36 ;-x-y+10 z=35$.
4. Find a non-singular matrix \boldsymbol{P} such that \boldsymbol{A} is diagonalizable, where $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$. Hence diagonalzie A.

Page 1 of 2

WWW.MANARESULTS.CO.IN

Subject Code: R13202/R13

5.(a) If A and B are n rowed square matrices and if A is invertible show that $A^{-1} B$ and $B A^{-1}$ have same Eigen Values.
(b) Find the current in each cell considering the circuit given below

6.(a) Find the perimeter of the loop of the curve $3 a y^{2}=x^{2}(a-x)$.
(b) Find the work done in moving a particle in the force field $F=2 x^{2} i+(2 y z-x) j-y k$, along
(i) the straight line from $(0,0,0)$ to $(3,1,2)$
(ii) the space curve $x=3 t^{2}, y=t, z=3 t^{2}-t$ from $t=0$ to $t=1$.
7.(a) Test the following system for consistency and if consistent solve it $u+2 v+2 w=1 ; 2 u+v+w=2 ; 3 u+2 v+2 w=3 ; v+w=0$
(b) Evaluate $\int_{0}^{\frac{\pi}{8}} \sin ^{4} 8 \theta \cos ^{6} 4 \theta d \theta$.

Subject Code: R13202/R13

Set No - 4

I B. Tech II Semester Supplementary Examinations Feb. - 2015 MATHEMATICS-III
 (Common to All Branches)

Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Write the Krichoff's laws.
(ii) Write the statement of Cayley-Hamilton theorem.
(iii) Write the relation between Beta and Gamma functions.
(iv) State irrotational and solenoidal vectors
(v) Write the statement of Sylvester's law of inertial.
(vi) Define latent roots and vectors.
$[4+4+4+4+3+3]$

PART- B

2.(a) Evaluate $\oint_{c}\left(2 x y-x^{2}\right) d x+\left(x+y^{2}\right) d y$ where C is the closed curve in xy plane bounded by the curves $y=x^{2}$ and $y^{2}=x$..
(b) Determine the Eigen values and Eigen vectors of $\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$
3.(a) Solve the equations

$$
2 x-y+3 z-9=0
$$

$x+y+z=6$
$x-y+z-2=0$
(b) Find the area of the curve $r^{2}=a^{2} \sin 2 \theta$.
4.(a) Find the unit normal to the surface $x y+y z+z x=3$ at the point $(1,1,1)$.
(b) Determine the rank of a matrix $A=\left[\begin{array}{cccc}-2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1\end{array}\right]$ by reducing it to normal form.
5.(a) Trace the curve $y\left(a^{2}+x^{2}\right)=a^{2} x$.
(b) Evaluate $\int_{0}^{\infty} \frac{x^{8}\left(1-x^{6}\right)}{(1+x)^{24}} d x$.

Page 1 of 2
WWW.MANARESULTS.CO.IN

Subject Code: R13202/R13

6.(a) If f, g are scalar fields, show that $\nabla f \times \nabla g$ is solenoidal.
(b) Find the moment of inertia of a hallow sphere about a diameter. Its external and internal radii being 5 meters and 4 meters.
7.(a) Determine the natural frequencies and normal modes of vibrating system for which $M=\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right]$ and stiffness $K=\left[\begin{array}{cc}6 & -2 \\ -2 & 9\end{array}\right]$.
(b) Verify Cayley-Hamiltion theorem for $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 5\end{array}\right]$

Page 2 of 2
WWW.MANARESULTS.CO.IN

