I B. Tech II Semester Supplementary Examinations, January/February - 2023 MATHEMATICS-III

(Common to all Branches)
Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any THREE Questions from Part-B

PART -A (22 Marks)

1. a) Reduce to echelon form and hence find the rank of the matrix A
b) Find the Eigen values of $2 A^{3}-3 A^{2}+5 A^{-1}$ if the Eigen values of A are 2, 3, $\& 4$.
c) Find the perimeter of the cardiod $r=a(1+\cos \theta)$
d) Find $\Gamma\left(\frac{5}{2}\right)$
e) Find grad ϕ where $\phi(x, y, z)=e^{\left(x^{2}+y^{2}+z^{2}\right)}$ at $(1,1,1)$
f) Evaluate $\int \bar{f}$. $d \bar{r}$ where $\bar{f}=(2 y+3) \bar{\imath}+x z \bar{\jmath}+(y z-x) \bar{k}$ along the path $x=2 t^{2}, y=t, z=t^{3}$.

PART -B (48 Marks)
2. a) Express the following system in matrix form and solve by Gauss elimination method. $2 x+y+z=10,3 x+2 y+3 z=18, x+4 y+9 z=16$.
b) Solve the system of equations $x+y-2 z+3 w=0 ; x-2 y+z-w=$ $0 ; 4 x+y-5 z+8 w=0 ; 5 x-7 y+2 z-w=0$
3. a) Reduce the Q.F. $3 x^{2}+2 y^{2}+z^{2}+4 x y+12 y z+8 x z$ to the Canonical form hence find rank index and signature.
b) Find the Eigen values and Eigen vectors of the matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
4. a) Evaluate $\iiint_{V} x y z d x d y d z$ where v is bounded by the co-ordinate planes and the plane $x+y+z=1$.
b) Evaluate $\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} x y d x d y$ by changing the order of the integration.
5. a) Evaluate $\int_{0}^{1} \frac{1}{\sqrt{1-x^{n}}} d x$.
b)

Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\sec \theta} d \theta$ using Beta -Gamma relation.
[8M]

1 of 2
|"||"|"|"||"|| www.manaresults.co.in
6. a) Prove that $\operatorname{Curl}(\operatorname{grad} \varphi)=\overline{0}$.
b) Find the directional derivative of $\phi=x y+y z+z x$ at A in the directional of $\overline{A B}$ where $A(1,2,-1)$ and $B(1,2,3)$.
7. a) Evaluate $\int_{s} \bar{F} . \hat{n} d s$ where $\bar{F}=z \bar{i}+x \bar{j}-3 y^{2} z \bar{k}$ where's' is the surface of the cylinder $x^{2}+y^{2}=1$ in the first octant between $z=0$ and $z=2$.
b) Evaluate $\int_{c}(x+y) d x+(2 x-z) d y+(y+z) d z$ where c is the boundary of the triangle with vertices $(2,0,0),(0,3,0)$, and $(0,0,6)$. using Stoke's theorem

