

I B. Tech II Semester Supplementary Examinations, January/February - 2023 MATHEMATICS-III

		(Common to all Branches)	
Time	::3 ł	nours Max. Ma	arks: 70
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is Compulsory 3. Answer any THREE Questions from Part-B 	
		PART –A (22 Marks)	
1.	a)	Reduce to echelon form and hence find the rank of the matrix A = $\begin{bmatrix} 1 & 2 & 4 & 2 \\ 2 & 1 & 3 & 6 \\ 2 & 4 & 6 & 7 \end{bmatrix}$.	[4M]
	b)	Find the Eigen values of $2A^3 - 3A^2 + 5A^{-1}$ if the Eigen values of A are 2, 3, &4.	[4M]
	c)	Find the perimeter of the cardiod $r = a(1 + \cos \theta)$	[4M]
	d)	Find $\Gamma\left(\frac{5}{2}\right)$	[3M]
	e)	Find grad ϕ where $\phi(x, y, z) = e^{(x^2 + y^2 + z^2)}$ at (1,1,1)	[3M]
	f)	Evaluate $\int \bar{f} d\bar{r}$ where $\bar{f} = (2y+3)\bar{\iota} + xz\bar{j} + (yz-x)\bar{k}$ along the path	[4M]
		$x = 2t^2$, $y = t, z = t^3$.	
		PART –B (48 Marks)	
2.	a)	Express the following system in matrix form and solve by Gauss elimination method. $2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16.$	[8M]
	b)	Solve the system of equations $x + y - 2z + 3w = 0$; $x - 2y + z - w = 0$; $4x + y - 5z + 8w = 0$; $5x - 7y + 2z - w = 0$	[8M]
3.	a)	Reduce the Q.F. $3x^2 + 2y^2 + z^2 + 4xy + 12yz + 8xz$ to the Canonical form hence find rank index and signature.	[8M]
	b)	Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.	[8M]
4.	a)	Evaluate $\iiint xyz dx dy dz$ where v is bounded by the co-ordinate planes and	[8M]
		the plane $x + y + z = 1$.	
	b)	Evaluate $\int_{-a}^{a} \int_{0}^{\sqrt{a^2 - x^2}} xy dx dy$ by changing the order of the integration.	[8M]
5.	a)	Evaluate $\int_{0}^{1} \frac{1}{\sqrt{1-x^{n}}} dx$.	[8M]
	b)	Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\sec \theta} d \theta$ using Beta -Gamma relation.	[8M]
		0 1 of 2	
ľ		" " www.manaresults.co.ln	

- 6. a) Prove that $Curl(grad \varphi) = \overline{0}$. [8M]
 - b) Find the directional derivative of $\phi = xy + yz + zx$ at A in the directional of \overline{AB} [8M] where A(1, 2, -1) and B(1, 2, 3).
- 7. a) Evaluate $\int_{s} \overline{F} \cdot \hat{n} \, ds$ where $\overline{F} = z\overline{i} + x\overline{j} 3y^2 z \, \overline{k}$ where's' is the surface of the [8M] cylinder $x^2 + y^2 = 1$ in the first octant between z = 0 and z = 2.
 - b) Evaluate $\int_{c} (x + y)dx + (2x z)dy + (y + z)dz$ where *c* is the boundary of the [8M] triangle with vertices (2, 0, 0), (0, 3, 0), and (0, 0, 6). using Stoke's theorem

2 of 2

["]]"["]["]] www.manaresults.co.in