Subject Code: R13202/R13

I B. Tech II Semester Regular/Supply Examinations July - 2015 MATHEMATICS-III
(Common to All Branches)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B *****

PART-A

1.(a) Find for what values of 'a' the equations, $x+y+z=1, x+2 y+4 z=a$ and $x+4 y+10 z=a^{2}$ have a solution.
(b) Find the moment of inertia about the initial line of the cardioids $r=a(1+\cos \theta)$.
(c) What is the nature of the quadratic form $X^{\mathrm{T}} A X$, if $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.
(d) Evaluate $\int_{0}^{1} \frac{x d x}{\sqrt{1-x^{5}}}$.
(e) If \varnothing satisfies Laplace equation, show that $\nabla \phi$ is both solenoidal and irrotational.
(f) Use Greens theorem to evaluate $\int_{c}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$, where c is the closed curve of the region bounded by $y=x^{2}$ and $y^{2}=x$.

PART-B

2.(a) Solve the system of equations $8 x-3 y+2 z=20,4 x+11 y-z=33$ and $6 x+3 y+12 z=36$ using Gauss-Seidel method.
(b) Reduce the matrix A to normal form and hence find the rank of the matrix

$$
\mathrm{A}=\left[\begin{array}{cccc}
2 & 1 & 3 & 4 \tag{8+8}\\
0 & 3 & 4 & 1 \\
2 & 3 & 7 & 5 \\
2 & 5 & 11 & 6
\end{array}\right]
$$

3.(a) Find Eigen values and Eigen vectors of $\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$.
(b) Reduce the Quadratic form to canonical form by orthogonal reduction and state the nature of the quadratic form $2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x$.

Subject Code: R13202/R13

4.(a) Find surface area of the right circular cone generated by the revolution of right angled triangle about a side which contains a right angle.
(b) Evaluate $\int_{0}^{a} \int_{a-x}^{\sqrt{a^{2}-x^{2}}} y d x d y$ by changing the order of integration.
5.(a) Evaluate $\int_{0}^{\infty} x^{2} e^{-x^{2}} d x$.
(b) Express $\int_{0}^{\infty} \frac{x^{c}}{c^{x}} d x,(c>1)$ in terms of Gamma function.
6.(a) Find the directional derivative of the function $\phi=x y^{2}+y z^{3}$ at $(2,-1,1)$ in the direction of normal to the surface $x \log z-y^{2}+4=0$ at $(-1,2,1)$.
(b) Show that $\frac{\bar{r}}{r^{3}}$ is solenoidal, where $\bar{r}=x \bar{i}+y \bar{j}+z \stackrel{+}{k}$.
7.(a) If $\bar{F}=x y \bar{i}-z \bar{j}+x^{2} \bar{k}$ and C is the curve $x=t^{2}, y=2 t$, and $z=t^{3}$ from $\mathrm{t}=0$ to $\mathrm{t}=1$, find the work done by \bar{F}.
(b) Use divergence theorem to evaluate $\iint_{S} \bar{F} \cdot d S$ where $\bar{F}=4 x \bar{i}-2 y^{2} \bar{j}+z^{2} \bar{k}$ and S is the surface bounded by the region $x^{2}+y^{2}=4, z=0$ and $z=3$.

Page 2 of 2

Subject Code: R13202/R13

I B. Tech II Semester Regular/Supply Examinations July - 2015 MATHEMATICS-III
 (Common to All Branches)

Time: 3 hours

Max. Marks: 70
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B *****

PART-A

1.(a) Find the value of ' a ' for which the system of equations $3 x-y+4 z=3 ; x+2 y-3 z=-2$ and $6 x+5 y+a z=-3$ will have infinite number of solutions.
(b) If 2, 3, 5 are the eigenvalues of matrix A, then find the eigenvalues of $2 \mathrm{~A}^{3}+3 \mathrm{~A}^{2}+5 \mathrm{~A}+3 \mathrm{I}$.
(c) Find the moment of inertia about the initial line of the cardioid $r=a(1-\cos \theta)$.
(d) Evaluate $\int_{0}^{1} \frac{x^{3}}{\sqrt{1-x^{5}}} d x$ in terms of Beta functions.
(e) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point (2,-1, 2).
(f) Evaluate $\int_{c}\left(e^{x} d x+2 y d y-d z\right)$ where c is the curve is the curve $x^{2}+y^{2}=9, \mathrm{z}=2$, by using Stoke's theorem.

PART-B

2.(a) Solve the equations $3 x+y+2 z=3,2 x-3 y-z=-3$ and $x+2 y+z=4$ using Gauss elimination method.
(b) Reduce the matrix A to normal form and hence find the rank of the matrix

$$
A=\left[\begin{array}{cccc}
2 & -2 & 0 & 6 \tag{8+8}\\
4 & 2 & 0 & 2 \\
1 & -1 & 0 & 3 \\
1 & -2 & 1 & 2
\end{array}\right]
$$

3.(a) Find A^{-1} using Cayley-Hamilton theorem, where $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$.
(b) Reduce the Quadratic form $x^{2}+3 y^{2}+3 z^{2}-2 y z$ into canonical form and find the nature, rank, index and signature.

Subject Code: R13202/R13

4.(a) Find the surface area generated by the revolution of an arc of the catenary $y=c \cosh \frac{x}{c}$ about x-axis.
(b) Change the order of integration and evaluate $\int_{0}^{a} \int_{x}^{a}\left(x^{2}+y^{2}\right) d y d x$.
5.(a) Prove that $\Gamma(\mathrm{n}) \Gamma(1-\mathrm{n})=\frac{\pi}{\sin \mathrm{n} \pi}$
(b) Express $\int_{0}^{1} x^{m}\left(1-x^{n}\right)^{p}$ in terms of Γ function.
6.(a) Find the directional derivative of $\frac{1}{r}$ in the direction of $\bar{r}=x \bar{i}+y \bar{j}+z \stackrel{+}{k}$ at $(1,1,2)$.
(b) If \bar{A} is irrotational, evaluate $\operatorname{div}(\bar{A} \times \bar{r})$ where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$.
7.(a) Find the work done by the force $z \bar{i}+x \bar{j}+y \bar{k}$, if it moves a particle along the arc of the curve $\bar{r}=\cos t \bar{i}+\sin t \bar{j}-t \bar{k}$ from $t=0$ to 2π.
(b) Compute $\int\left(a x^{2}+b y^{2}+c z^{2}\right) d s$ over the surface of the sphere $x^{2}+y^{2}+z^{2}=1$.

Subject Code: R13202/R13

I B. Tech II Semester Regular/Supply Examinations July - 2015 MATHEMATICS-III
(Common to All Branches)

Time: 3 hours

Max. Marks: 70
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(a) Find for what values of ' a ' such that the rank of the matrix A is 2 , where

$$
A=\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
1 & -1 & a & -1 \\
3 & 1 & 0 & 1
\end{array}\right]
$$

(b) Prove that the Eigen values of a Skew-Hermitian matrix are either purely imaginary or zero.
(c) Find the length of the curve $3 x^{2}=y^{3}$ between $\mathrm{y}=0$ and $\mathrm{y}=1$.
(d) Evaluate $\int_{0}^{1} \frac{d x}{\left(1-x^{3}\right)^{1 / 3}}$ using Beta functions.
(e) Find $\operatorname{div} \bar{F}$, where $\bar{F}=r^{n} \bar{r}$. Find n if it is solenoidal.
(f) Using Stoke's theorem, evaluate the integral $\int_{c} \bar{F} \cdot d r$, where
$\bar{F}=2 y^{2} \bar{i}+3 x^{2} \bar{j}-(2 x+z) \bar{k}$ and c is the boundary of the triangle whose vertices are $(0,0,0),(2,0,0)$ and $(2,2,0)$.

PART- B

2.(a) Using Gauss-Jordon method solve the system of equations

$$
2 x+y+z=10,3 x+2 y+3 z=18 \text { and } x+4 y+9 z=16 .
$$

(b) Reduce the matrix A to normal form and hence find the rank of the matrix

$$
A=\left[\begin{array}{cccc}
2 & 1 & 3 & 4 \tag{8+8}\\
0 & 3 & 4 & 1 \\
2 & 3 & 7 & 5 \\
2 & 5 & 11 & 6
\end{array}\right]
$$

Page 1 of 2

WWW.MANARESULTS.CO.IN

Subject Code: R13202/R13

3.(a) Find A^{-1} by using Cayley-Hamilton theorem, where $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$.
(b) Reduce the Quadratic form to canonical form by orthogonal reduction and state the nature of the quadratic form $2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x$.
4.(a) Find the volume obtained by revolving the loop of the curve $x=t^{3}, y=t-\frac{t^{3}}{3}$ about x axis.
(b) Change the order of integration and evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} d y d x$.
5.(a) Evaluate $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{5}}} d x$ using β and Γ function.
(b) Show that $\int_{0}^{\infty} x^{m} e^{-a x^{n}} d x=\frac{1}{n a^{\frac{m+1}{n}}} \Gamma\left(\frac{m+1}{n}\right)$.
6.(a) Find the directional derivative of $x^{2}-2 y^{2}+4 z^{2}$ at $(1,1,-1)$ in the direction of $2 \bar{i}+\bar{j}-\bar{k}$
(b) Find a, b, c so that $\bar{A}=(x+2 y+a z) \bar{i}+(b x-3 y-z) \bar{j}+(4 x+y+2 z) \bar{k}$ is irrotational. Also find ϕ such that $\bar{A}=\nabla \phi$.
7.(a) Compute the line integral $\int\left(y^{2} d x-x^{2} d y\right)$ round the triangle whose vertices are $(1,0)$, $(0,1)$ and $(-1,0)$.
(b) Use divergence theorem to evaluate $\iint_{S} \bar{F} \cdot d \bar{S}$ where $\bar{F}=x^{3} i+y^{3} j+z^{3} k$ and S is surface of the sphere $x^{2}+y^{2}+z^{2}=r^{2}$.

Subject Code: R13202/R13

I B. Tech II Semester Regular/Supply Examinations July - 2015 MATHEMATICS-III
 (Common to All Branches)

Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B *****
PART-A
1.(a) Find the values of ' a ' and ' b ' for which equation $x+y+z=3 ; x+2 y+2 z=6 ; x+a y+3 z=b$ have unique solution.
(b) Prove that the eigenvalues of a Skew-Hermitian matrix are either purely imaginary or zero.
(c) Find the moment of inertia about the initial line of the cardioid $r=a(1+\cos \theta)$.
(d) Evaluate $\int_{0}^{1} \frac{x^{3}}{\sqrt{1-x^{5}}} d x$ in terms of Beta functions.
(e) Find the directional derivative of $2 \mathrm{xy}+\mathrm{z}^{2}$ at $(1,-1,3)$ in the direction of $\overline{\mathrm{i}}+2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}$
(f) Using Stoke's theorem, evaluate $\int_{c} \bar{F} \cdot d r$, where $\bar{F}=2 y^{2} \bar{i}+3 x^{2} \bar{j}-(2 x+z) \bar{k}$ and c is the boundary of the triangle whose vertices are $(0,0,0),(1,0,0)$ and $(1,1,0)$.
$[3+3+4+4+4+4]$

PART-B

2.(a) Solve the system of equations using Gauss-Seidel method correct to three decimal place $8 x-3 y+2 z=20,4 x+11 y-z=33$ and $6 x+3 y+12 z=36$.
(b) Reduce the matrix A to normal form and hence find the rank of the matrix

$$
A=\left[\begin{array}{cccc}
2 & 1 & 3 & 5 \tag{8+8}\\
4 & 2 & 1 & 3 \\
8 & 4 & 7 & 13 \\
8 & 4 & -3 & -1
\end{array}\right]
$$

3.(a) Find Eigen values and Eigen vectors of $\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$.
(b) Reduce the Quadratic form $10 x^{2}+2 y^{2}+5 z^{2}-4 x y-10 x z+6 y z$ into canonical form and find the nature, rank, index and signature.

Page 1 of 2

Subject Code: R13202/R13

4.(a) Find the volume of the solid of revolution generated by the revolution of the cissoid $y^{2}=\frac{x^{3}}{2 a-x} \quad$ about its asymptote.
(b) Change the order of integration and evaluate $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{2 a-x} x y^{2} d y d x$.
5.(a) Evaluate $\int_{5}^{7}(x-5)^{6}(7-x)^{3} d x$ using β and Γ functions.
(b) Express $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{n}}}$ in terms of Γ function.
6.(a) If Prove that $\nabla \cdot\left[r \nabla\left(\frac{1}{r^{3}}\right)\right]=\frac{3}{r^{4}}$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
(b) Find the directional derivative of $x^{2}-2 y^{2}+4 z^{2}$ at $(1,1,-1)$ in the direction of $2 \bar{i}+\bar{j}-\bar{k}$.
7.(a) If $\bar{F}=\left(5 x y-6 x^{2}\right) \bar{i}+(2 y-4 z) \bar{j}$, evaluate $\int_{c} \bar{F} \cdot d r$ along the curve c: $y=x^{3}$ from $(1,1)$ to $(2,8)$.
(b) Apply Stoke's theorem to evaluate $\oint_{c}(y d x+z d y+x d z)$ where c is the curve of intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and $x+z=a$.

Page 2 of 2

