I B. Tech II Semester Regular Examinations August - 2014 MATHEMATICS-III

(Common to All Branches)

Time: 3 hours
Max. Marks: 70

> Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B
> $*_{* * * *}$

PART-A

1.(i) Write down the properties of orthogonal matrix.
(ii) Write the nature of $2 y_{1}^{2}+4 y_{2}^{2}+5 y_{3}^{2}$.
(iii) If A and B are non-singular matrices of same order, show that AB and BA have same eigen values.
(iv) Find the area of loop of the curve $r^{2}=a^{2} \cos 2 \theta$
(v) Find the moment of inertia of a circle A of radius R relative to the centre O .
(vi) Evaluate $\int_{0}^{\infty} \frac{x^{6}\left(1-x^{10}\right) d x}{(1+x)^{24}}$
(vii) If \boldsymbol{F} is a conservative vector field show that $\operatorname{curl} \boldsymbol{F}=0$.
(viii) Write down the physical interpretation of Green's theroem.

PART - B

2.(a) Reduce the matrix $\left[\begin{array}{cccc}1 & 0 & -3 & 2 \\ 0 & 1 & 4 & 5 \\ 1 & 3 & 2 & 0 \\ 1 & 1 & -2 & 0\end{array}\right]$ to normal form and find its rank.
(b) Solve, by Gauss-Seidal method, the equations

$$
\begin{aligned}
& 9 x-2 y+z-t=50 \\
& x-7 y+3 z+t=20 \\
& -2 x+2 y+7 z+2 t=22 \\
& x+y-2 z+6 t=18
\end{aligned}
$$

3. Diagonalise the matrix $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$ and hence find A^{4}.
4.(a) Find the volume of solid generated by the revolution of the cardioid $r=a(1+\cos \theta)$ about $\theta=0$.
(b) Evaluate $\iint_{R}\left(\sqrt{x y}-y^{2}\right) d x d y$ where R is triangle with vertices at $(0,0),(10,1),(1,1)$.
5.(a) Show that $\int_{0}^{1} x^{3}\left[\log \left(\frac{1}{x}\right)\right]^{4} d x=\frac{3}{128}$.
(b) Prove that $\int_{0}^{4} \sqrt{x}(4-x)^{\frac{3}{2}} d x=64 \beta\left(\frac{3}{2}, \frac{5}{2}\right)$.

Page 1 of 2

WWW.MANARESULTS.CO.IN
||"|"||"|"""|

Subject Code: R13202/R13

Set No - 1
6.(a) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$
(b) Prove that $\nabla\left[\nabla \cdot \frac{\vec{r}}{r}\right]=\frac{-2}{r^{3}} \vec{r}$
7.(a) Use Stokes theorem to evaluate the integral $\int_{C} \boldsymbol{A} . \boldsymbol{d r}$ where $\boldsymbol{A}=2 \mathrm{y}^{2} i+3 \mathrm{x}^{2} j-(2 x+z) k$, and C is the boundary of the triangle whose vertices are $(0,0,0),(2,0,0),(2,2,0)$
(b) Find the workdone in moving a particle in the force field $\boldsymbol{F}=3 \mathrm{x}^{2} i+j+z k$ along the straight line from $(0,0,0)$ to $(2,1,3)$

I B. Tech II Semester Regular Examinations August - 2014 MATHEMATICS-III
 (Common to All Branches)

Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Express $\left[\begin{array}{ll}3 & 7 \\ 4 & 5\end{array}\right]$ as sum of a symmetric and skew-symmetric matrices.
(ii) When does a non homogeneous system consistent?
(iii) Define the latent root and latent vector.
(iv) Find the volume of a sphere of radius ' a '.
(v) Find the moment of inertia of a hallow sphere about a diameter. Its external and internal radii being 5 meters and 4 meters.
(vi) Evaluate $\int_{0}^{\infty} \sqrt{x e^{-x^{3}}} d x$
(vii) If \boldsymbol{A} is a vector function, find $\operatorname{Div}(\operatorname{Curl} \boldsymbol{A})$
(viii) Write down the physical interpretation of Stoke's theroem.
$[3+2+3+3+3+3+3+2]$

PART - B

2.(a) Reduce the matrix $\left[\begin{array}{llll}3 & 1 & 4 & 6 \\ 2 & 1 & 2 & 4 \\ 4 & 2 & 5 & 8 \\ 1 & 1 & 2 & 2\end{array}\right]$ to Echelon form and find its rank.
(b) Solve, by LU Decomposition method, the equations

$$
\begin{align*}
& x+2 y+3 z=10 \\
& 3 x+y+2 z=13 \\
& 2 x+3 y+z=13 \tag{8+8}
\end{align*}
$$

3. Verify Cayley-Hamiltion theorem for $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ 3 & 1 & -1 \\ 2 & 0 & 3\end{array}\right]$ and hence find A^{-1}.
4.(a) Find the length of the loop of the curve $3 a y^{2}=x(x-a)^{2}$
(b) Find the volume of the solid generated by the revolution of the cardioid $r=a(1+\cos \theta)$ about the initial line $\theta=0$.
5.(a) Show that $\int_{0}^{1}[x \log (x)]^{3} d x=\frac{-3}{128}$.
(b) Evaluate $4 \int_{0}^{\infty} \frac{x^{2} d x}{1+x^{4}}$ using $\beta-\Gamma$ functions.

Page 1 of 2

WWW.MANARESULTS.CO.IN
||"|"||"|"""|

Subject Code: R13202/R13

6. (a) Find the work done in moving a particle in the force field
$\boldsymbol{F}=2 x^{2} i+(2 y z-x) j+y k$ along the space curve $x=3 t^{2}, y=t, z=3 t^{2}-t$ from $t=0$ to $t=1$.
(b) Prove that $\operatorname{curl}(a \times b)=a \operatorname{div} b-b \operatorname{div} a+(\vec{b} \cdot \nabla) a-(a \cdot \nabla) b$
7.(a) Verify the divergence theorem for $\boldsymbol{F}=4 \mathrm{xyi}-\mathrm{y}^{2} j+x z k$, over the cube bounded by $x=0, x=1, y=0, y=1$, $z=0$ and $z=1$.
(b) Evaluate $\iint_{S} \boldsymbol{A} \cdot \boldsymbol{n} d s$ where $\boldsymbol{A}=y z i+z x j+x y k$ and S is the part of the sphere $x^{2}+y^{2}+z^{2}=9$ which lies in the first octant.

Page 2 of 2

I B. Tech II Semester Regular Examinations August - 2014 MATHEMATICS-III

(Common to All Branches)

Time: $\mathbf{3}$ hours
Max. Marks: 70

> Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B
> $* * * * *$

PART-A

1.(i) Define rank of a matrix.
(ii) Write the nature of $-3 y_{1}^{2}-2 y_{2}^{2}-y_{3}^{2}$
(iii) Find the matrix of the quadratic form $q=x^{2}-6 x y+3 y^{2}$.
(iv) Find the length of the arc $a y^{2}=x^{3}$ from the vertex to the ordinate $x=5 a$.
(v) Find the moment of inertia of a circle A of radius R relative to the centre O .
(vi) Define β and Γ functions and write the relation between them.
(vii) Show that $\boldsymbol{V}=3 y^{4} z^{2} i+4 x^{3} z^{2} j+6 x^{2} y^{3} k$ is solenoidal.
(viii) Write down the physical interpretation of Gauss's divergence theorem.

$$
[3+3+3+3+3+2+3+2]
$$

PART - B

2.(a) Find the inverse of a matrix $\left[\begin{array}{cccc}-1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1\end{array}\right]$, using elementary operations.
(b) If consistent, solve the system of equations

$$
\begin{aligned}
& x+y+z+t=4 \\
& x-z+2 t=2 \\
& y+z-3 t=-1 \\
& x+2 y-z+t=3 .
\end{aligned}
$$

3.(a) Find the latent values and latent roots of the matrix $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2\end{array}\right]$.
(b) Verify Cayley-Hamilton theorem and hence find A^{-1} if $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$.
4.(a) Find the perimeter of the cardioids $r=a(1-\cos \theta)$.
(b) Find the moment of inertia of the area bounded by the curve $r^{2}=a^{2} \cos 2 \theta$ about its axis.
5.(a) Evaluate $\int_{0}^{\infty} 3^{-4 x^{2}} d x$.
(b) Evaluate $\int_{0}^{a} x^{4} \sqrt{a^{2}-x^{2}} d x$.

Page 1 of 2

WWW.MANARESULTS.CO.IN
6. (a) Find the directional derivative of $\emptyset(x, y, z)=x y^{2}+y z^{2}$ at the point $(2,-1,1)$ in the direction of $i+2 j+2 k$
(b) Prove that $\operatorname{Div}(A \times B)=B . \operatorname{curl} A-A . c u r l B$
7.(a) Evaluate using the divergence theorem $\iint_{S}(\boldsymbol{F} . \boldsymbol{n}) \boldsymbol{d} \boldsymbol{s}$ where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=b^{2}$ in the first octant and $\boldsymbol{F}=\mathrm{y} i+z j+x k$
(b) If $\boldsymbol{A}=\left(3 \mathrm{xy}-2 \mathrm{y}^{2}\right) i+(x-y) j$, evaluate $\int_{C} \boldsymbol{A}$. $\boldsymbol{d r}$ along the curve C in xy -plane given by $y=x^{3}$ from the point $(0,0)$ to $(2,8)$

Page 2 of 2

I B. Tech II Semester Regular Examinations August - 2014 MATHEMATICS-III

(Common to All Branches)

Time: 3 hours
Max. Marks: 70

> Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Show that $\left[\begin{array}{ccc}-1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & -5 & 5\end{array}\right]$ is idempotent.
(ii) When does the non homogeneous system consistent?
(iii) Define positive definite, negative definite and indefinite.
(iv) Find the volume of a sphere of radius ' a '.
(v) Find the surface area of the solid generated by the revolution about the x -axis of the area bounded by the curves $y=f(x)$, the x -axis the ordinates $x=a, x=b$.
(vi) Define Gamma function and Beta function and write the relation between them.
(vii) Find the normal to the surface $x^{2}+y^{2}+2 z^{2}=26$ at the point $(2,2,3)$
(viii) Write the statement of Green's theroem.
$[3+3+3+3+3+2+3+2]$

PART - B

2.(a) If $A=\left[\begin{array}{cccc}1 & -1 & -1 & 2 \\ 4 & 2 & 2 & -1 \\ 2 & 2 & 0 & -2\end{array}\right]$, find two non-singular matrices P and Q such that PAQ is in the normal form.
(b) Test for consistency and solve

$$
\begin{align*}
& 5 x+3 y+7 z=4 \\
& 3 x+26 y+2 z=9 \\
& 7 x+2 y+10 z=5 \tag{8+8}
\end{align*}
$$

3. Reduce the quadratic form $q=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+4 x_{1} x_{2}-2 x_{2} x_{3}+6 x_{3} x_{1}$ into a canonical form by diagonalising the matrix of the quadratic form.
4.(a) Trace the curve $y=\frac{x^{2}+2 x}{x+1}$.
(b) Find the volume of the solid generated by the revolution of the curve $x y^{2}=4(2-x)$ about y-axis.
5.(a) Evaluate $\int_{0}^{2} x^{7}\left(16-x^{4}\right)^{10} d x$.
(b) Evaluate $4 \int_{0}^{\infty} \frac{x^{2} d x}{1+x^{4}}$ using $\beta-\Gamma$ functions.

Page 1 of 2

WWW.MANARESULTS.CO.IN
||"|"||"|"""|
6. (a) Show that the vector $\left[\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k\right]$ is irrotational and find the scalar potential.
(b) Find the acute angle between the surface $x y^{2} z=2$ and $x^{2}+y^{2}+z^{2}=6$ at the point (2, 1, 1).
7.(a) Verify the divergence theorem for $\boldsymbol{F}=4 \mathrm{xyi} i-\mathrm{y}^{2} j+x z k$, over the cube bounded by $x=0, x=1, y=0, y=1$, $z=0$ and $z=1$.
(b) Evaluate $\iint_{S}(\operatorname{curl} \boldsymbol{A}) \cdot \boldsymbol{n} d s$ where $\boldsymbol{A}=y i+(x-2 z) j-x y k$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=4$ above the $x y$-plane.

