(4M)

I B. Tech II Semester Supplementary Examinations, July/August-2021 **MATHEMATICS-III**

(Com. to all branches)

Time: 3 hours Max. Marks: 70

Note: 1. Question paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **THREE** Questions from **Part-B**

PART -A

- 1. a) Prove that if one Eigen value of a matrix is '0', then A is symmetric matrix. (4M)
 - b) If the Eigen values of the matrix corresponding to a quadratic form are -3, -3 and 3M) 5, then what are the index, signature and nature of the quadratic form?
 - c) Evaluate $\int_{0}^{\pi} (8 x^3)^{1/3} dx$ using β and γ functions. (4M)
 - d) Evaluate $\int_{0}^{1} dx \int_{0}^{x} e^{y/x} dy$.
 - e) If $\phi = ax^2 + by^2 + cz^2$ satisfies Laplacian equation, then what is the value of (4M)
 - f) If $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$ then evaluate $\oint \bar{r}.d\bar{r}$. (3M)

PART -B

- 2. a) Find the rank of the matrix by reducing it to normal form $\begin{vmatrix} 1 & 2 & 2 & 4 \\ 2 & 3 & 4 & 6 \\ 3 & 5 & 6 & 10 \end{vmatrix}$ (8M)
 - b) Apply Gauss-Seidel method to solve the equations 2x+y+6z=9; 8x+3y+2z=13; (8M)x+5y+z=7.
- 3. a) Find the Eigen values and the corresponding Eigen vectors of $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$. (8M)
 - b) Using Cayley-Hamilton theorem, find A^{-1} , where $A = \begin{bmatrix} 2 & -1 & 2 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$.

 a) Proved: (8M)
- 4. a) Prove that the length of the arc of a loop of the curve $9ay^2 = x(x 3a)^2$ is $4\sqrt{3}a$. (8M)
 - b) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} \sqrt{x^2+y^2} dy dx$ by changing into polar coordinates. (8M)

Code No: R13202

R13

SET-1

(8M)

5. a) Evaluate $\int_{0}^{\infty} \frac{x}{1+x^4} dx$ using β and γ functions.

b)
$$Evaluate \int_{0}^{1} x(1-x^3)^{1/3} dx$$
 (8M)

- 6. a) Find the angle between the normals to the surface $x^2 = yz$ at the points (1, 1, 1) and (2, 4, 1).
 - b) Prove that $\operatorname{curl}(\overline{a} \times \overline{b}) = \overline{a} \operatorname{div} \overline{b} \overline{b} \operatorname{div} \overline{a} + (\overline{b} \cdot \nabla) \overline{a} (\overline{a} \cdot \nabla) \overline{b}$. (8M)
- 7. a) Evaluate $\int_C (xy + y^2) dx + (x^2) dy$ where C is the curve bounded $y = x^2$ and y = x. (8M)
 - b) Evaluate $\iint_{S} \overline{F} \cdot \overline{n} \, ds$ if $\overline{F} = yz\overline{i} + 2y^{2}\overline{j} + xz^{2}\overline{k}$ and S is the surface of the cylinder $x^{2} + y^{2} = 9$ contained in the first octant between the planes z = 0 and z = 2.