I B. Tech II Semester Supplementary Examinations, Nov/Dec - 2017 MATHEMATICS-III

(Com. to All Branches)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is Compulsory
 3. Answer any THREE Questions from Part-B

PART -A

1. a) Reduce the matrix $A=\left[\begin{array}{llll}0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right]$ in to Echelon form and hence find the rank.
b) If λ is an Eigen value of a non singular matrix A. Show that $1 / \lambda$ is an Eigen value of A^{-1}
c) Trace the curve $r \theta=a(a>0)$.
d) Show that $\int_{0}^{\pi / 2} \sin ^{m} \theta \cos ^{n} \theta d \theta=\frac{1}{2} B\left(\frac{m+1}{2}, \frac{n+1}{2}\right)$
e) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=12$ and $x^{2}+y^{2}-z^{2}=6$ at $(2,-2,2)$
f) Evaluate $\int_{C} \bar{F} . d \bar{r}$ If $\bar{F}=\left(5 x y-6 x^{2}\right) \bar{i}+(2 y-4 x) \bar{j} \quad$ along the curve C in xy plane $y=x^{3} \quad$ from $(1,1)$ to $(2,8)$.

PART -B

2. a) Determine whether the following equations will have a non-trivial solution if so solve them $4 x+2 y+z+3 w=0,6 x+2 y+4 z+7 w=0,2 x+y+w=0$
b) Test for Consistency the set of equations and solve them if they are consistent.

$$
x+2 y+2 z=2 ; 3 x-2 y-z=5 ; 2 x-5 y+3 z=-4 ; x+4 y+6 z=0
$$

3. a) Reduce the quadratic form $8 x^{2}+7 y^{2}+3 z^{2}-12 x y-8 y z+4 x z$ to the canonical form hence find the rank, index and signature.
b) Determine the characteristic roots and the corresponding characteristic vectors of
the matrix $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$
WWW.MANARESULTS.CO.IN
4. a) Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{0}^{a \cos \theta} r \sqrt{a^{2}-r^{2}} d r d \theta$
b) Find the Length of the curve $3 x^{2}=y^{3}$ between $y=0 \& y=1$.
5. a) Evaluate $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{5}}} d x \quad$ in terms of Beta-Gamma function.
b) Show that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$
6. a) Find the directional derivation of $\varphi(x, y, z)=x^{2} y z+4 x z^{2}$ at the point $(1,-2,-1)$ in the direction of $2 \bar{i}+\bar{j}-2 \bar{k}$
b) If \bar{f}, \bar{g} are two vector point functions then show that $\nabla \times(\bar{f} \times \bar{g})=\bar{f}(\nabla \cdot \bar{g})-\bar{g}(\nabla \cdot \bar{f})+(\bar{g} \cdot \nabla) \bar{f}-(\bar{f} \cdot \nabla) \bar{g}$
7. a) Verify Green's theorem in the plane for $\int_{C}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y$ where C is a square with vertices $(0,0),(2,0),(2,2),(0,2)$.
b) Evaluate $\iint_{s} f . n d s$ where $f=y^{2} i+y j-x z k \quad$ where s is the upper half of the sphere with radius 'a' units.
