I B. Tech II Semester Supplementary Examinations, November - 2021 **MATHEMATICS-III**

R13

(Com. to all branches)

Time: 3 hours Max. Marks: 70

Note: 1. Question paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **THREE** Questions from **Part-B**

PART -A

- 1. a) Prove that if λ is an eigen values of a matrix A then 1/ λ is an Eigen value of A⁻¹. (4M)
 - b) If the eigen values of the matrix corresponding to a quadratic form are 2, -3 and (3M)5, then what are the index, signature and nature of the quadratic form?

c) Evaluate
$$\int_{0}^{1} \int_{0}^{x} e^{x} dx dy.$$
 (4M)

d) Evaluate
$$\int_{0}^{\pi/2} \sin^{11/2} x dx$$
. (3M)

e) If
$$\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$$
 then find the $\nabla^2 \left(\frac{1}{r}\right)$. (4M)

f) Evaluate, if
$$\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$$
, $\int_{s} \bar{r} \times \bar{n} ds$ (4M)

PART-B

- 2. a) Find the rank of the matrix by reducing it to normal form $\begin{vmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \end{vmatrix}$ (8M)
 - b) Apply Gauss-Jacobi method to solve the equations 27x+6y-z=85; x+y+54z=40; (8M)6x+15y+2z=72.
- Find the eigenvalues and the corresponding eigen vectors of $\begin{bmatrix} 1 & 1 & 1 \\ -1 & -3 & -3 \\ 2 & 4 & 4 \end{bmatrix}$. (8M)
 - Using Cayley-Hamilton theorem, find A^{-1} , where $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$. (8M)
- a) Find the perimeter of the loop of the curve $3ay^2 = x(x-a)^2$. (8M)
 - b) Evaluate $\iint (x+y)dxdy$, over the region in the positive quadrant bounded by the (8M)ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Code No: R13202

R13

SET-1

- 5. a) Express the integral $\int_{0}^{\infty} \frac{x^{c}}{c^{x}} dx$ in terms of Gamma function. (8M)
 - b) Evaluate $\int_{0}^{\pi/2} \sin^{5/2} \cos^{3/2} dx$. (8M)
- 6. a) Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) in the direction of (8M) $2\bar{i} \bar{j} 2\bar{k}$.
 - b) Prove that $\nabla \times \left(\frac{\overline{A} \times \overline{r}}{r^n}\right) = \frac{(2-n)\overline{A}}{r^n} + \frac{n(\overline{r}.\overline{A})\overline{r}}{r^{n+2}}.$ (8M)
- 7. a) If $\overline{F} = 4xz\overline{i} y^2\overline{j} + yz\overline{k}$, evaluate $\int_S \overline{F}.\overline{n}ds$ where S is the surface of the cube (8M) bounded by x = 0, x = a, y = 0, y = a, z = 0, z = a.
 - b) Evaluate $\int_{c}^{c} (x^2 + xy) dx + (x^2 + y^2) dy$, where C is the square formed by the lines (8M) x = 1, x = -1, y = 1, y = -1.