I B. Tech II Semester Supplementary Examinations, December - 2020 MATHEMATICS-III

(Com. to all branches)

Time: 3 hours Max. Marks: 70

Note: 1. Question paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in Part-A is Compulsory
- 3. Answer any **THREE** Questions from **Part-B**

PART -A

- 1. a) Find the Rank of the matrix $\begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ using Echelon form. (3M)
 - b) If λ is an Eigen value of a non singular matrix A. Show that $1/\lambda$ is an Eigen value (3M) of A^{-1}
 - c) Evaluate $\int_{0}^{1} \int_{0}^{y} e^{x/y} dx dy$ (4M)
 - d) Prove that $\beta\left(\frac{1}{2}, \frac{1}{2}\right) = \pi$ (4M)
 - e) Prove that $\nabla(\log r) = \frac{r}{r^2}$ (4M)
 - Evaluate $\int_C \overline{F} \cdot d\overline{r}$ where $\overline{F} = 2x^2yz \overline{i} + x^2y \overline{j}$ where C is the curve x = t, $y = t^2$, $z = t^3$ (4M) from t=0 to t=1.

PART -B

- 2. a) Solve the system of equations by Gauss –Seidel method. 8x-3y+2z=20; 4x+11y-z=33; 6x+3y+12z=36 (8M)
 - b) Solve the equations x + y 2z + 3w = 0, x 2y + z w = 0.4x + y 5z + (8M)8w = 0.5x - 7y + 2z - w = 0.
- 3. a) Find the Nature, Rank, index, signature of the quadratic form (8M) $2x^2 + y^2 3z^2 + 12xy 4xz 8yz$
 - b) Verify Cayley Hamilton theorem and hence find A^{-1} if $A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ (8M)
- 4. a) Evaluate $\iiint_{y} (x^2 + y^2 + z^2) dx dy dz \text{ taken over the Region } 0 \le z \le x^2 + y^2 \le 1.$ (8M)
 - b) Evaluate by change of order of Integration $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} f(x,y) dy dy.$ (8M)

Code No: R13202

R13

SET-1

- 5. a) Show that $\int_{a}^{b} (x-a)^{m-1} (b-x)^{n-1} dx = (b-a)^{m+n-1} \beta(m,n)m > 0, n > 0$ (8M)
 - b) Evaluate: $\int_{0}^{\infty} \frac{x^{6} \left(1 x^{10}\right)}{\left(1 + x\right)^{24}} dx$ using Beta and Gamma functions. (8M)
- 6. a) Find the directional derivative of the function $6x^2y + 24y^2z 8z^2x$ at the (1,1,1) (8M) in the direction to parallel to the line $\frac{x-1}{2} = \frac{y-3}{2} = \frac{z}{1}$ hence find the maximum value.
 - b) Show that the vector $(x^2 yz)\overline{i} + (y^2 zx)\overline{j} + (z^2 xy)\overline{k}$ is irrotational and find its scalar potential. (8M)
- 7. a) verify stoke's theorem for the function F = zi + xj + yk where c is the unit circle in (8M) the xy plane bounded by Hemi sphere $z = \sqrt{1 x^2 y^2}$
 - b) Evaluate $\iint_{c} \cos y \, dx + x(1 \sin y) \, dy$ over a closed curve c is given by $x^2 + y^2 = 1$; (8M) z = 0. Using Green's theorem.