Code No: **R13207**

SET-1

I B. Tech II Semester Supplementary Examinations, January/February - 2023 MATHEMATICS-II (MM)

т	:	(Common to CE, ME)	a. 70
1	ime:	3 nours Max. Mark	s: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. All the question in Part-A is Compulsory 3. Answer any THREE Questions from Part-B	
		<u>PART –A(22 Marks)</u>	
1.	a)	Find a positive root of $x^3 - x - 1 = 0$ using Bisection method in 3 stages.	[4M]
	b)	Show that $\mu^2 = 1 + \frac{\delta^2}{4}$	[4M]
	c)	Solve $y' = x + y$ given $y(1) = 0$. Find $y(1.1)$ by Taylor's series method.	[3M]
	d)	Express a function $f(x)$ as a half range cosine series in $(0, \pi)$.	[4M]
	e)	Show that $F_s[f(x)\cos ax] = \frac{1}{2}[F_s(p+a) + F_s(p-a)]$	[4M]
	f)	Find $Z[(n-1)^2]$.	[3M]
		<u>PART –B (48 Marks)</u>	
2.	a)	Find the root of the equation $x \log_{10} x = 1.2$ using false position method.	[8M]
	b)	Using Newton Raphson method find a positive root of $x^4 - x - 9 = 0$ in [1,2]	[8M]
3.	a)	Find the Newton's forward difference interpolating polynomial for	[8M]
		x 0 1 2 3	
		f(x) 1 3 7 13	
	b)	Find the value of $f(2)$ using Lagrange's interpolation formula.	[8M]
	,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		f(x) = 5 6 50 105	
4.	a)	Using modified Euler method find $v(0, 2)$ given $v' = v + e^x$ and $v(0) = 0$	[8M]
	b)	Use Runge-Kutta method to evaluate $y(0.1)$, given that $y' = x + y$, $y(0) = 1$.	[8M]
5.	a)	Express $f(x) = x$ as a Fourier series in $(-\pi, \pi)$.	[8M]
	b)	Find the half range sine series for $f(x) = x(\pi - x)$ in $0 < x < \pi$ and deduct	[8M]
		$\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} \dots = \frac{\pi^3}{32}$	
6.	a)	$\frac{x^2}{2}$	[8M]
	b)	Find Fourier transform of $f(x) = e^{-x}$, $-\infty < x < \infty$.	[8M]
	,	Find Fourier cosine transform of $f(x) = \begin{cases} x & y & 0 \le x \le 1 \\ 2 - x & if & 1 \le x \le 2 \end{cases}$	
		$\begin{bmatrix} 2 & i & j \\ 0 & if \\ x > 2 \end{bmatrix}$	
7.	a)	Find $Z\left\{\frac{1}{n(n+1)}\right\}$	[8M]
	b)	Using the Z transform solve $y_{n+2} - 7y_{n+1} + 12y_n = 0$ given that $y_0 = 1$, $y_1 = 2$.	[8M]
		*****	-

|"|"|"|"|"| www.manarest1ts.co.in