I B. Tech II Semester Regular/Supplementary Examinations May - 2016 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E, Textile Engg.) Time: 3 hours Max. Marks: 70

> Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

1. (a) Using Bisection method, find a real root of $x^3 - x - 11 = 0$ upto 3 approximations.

(b) If the interval of difference is unity, prove that $\Delta \tan^{-1}\left(\frac{n-1}{n}\right) = \tan^{-1}\left(\frac{1}{2n^2}\right)$.

- (c) Find the value of y for x = 0.2 by Picard's method, given that $\frac{dy}{dx} = x + y$, y(0) = 3 up to 2 approximations.
- (d) Find the Fourier sine series of $f(x) = (2-x)^2$ in [0, 2].
- (e) If $F_s(p)$ is the Fourier sine transform of f(x), then prove that $F_s[f(ax)] = \frac{1}{a} F_s\left(\frac{p}{a}\right)$.
- (f) Find the Z-transform of $a^{-n} \cos nt$.

[4+4+4+4+2]

PART-B

- 2. (a) Find a positive root of the equation $3x = \cos x + l$ by Newton Raphson method.
 - (b) Find y(74) given that y(50) = 201, y(60) = 225, y(70) = 248 and y(80) = 274. Using Newton's difference formula.
- 3. (a) Find a real root of log x = cos x using regula falsi method.
 - (b) Using Lagrange's Interpolation formula find the value of y(10) from the following table

Х	5	6	9	11
y(x)	12	13	14	16

[8+8]

[8+8]

- 4. (a) Given $y^1 = x + \sin y$, y(0) = 1. Compute y(0.2) with h = 0.1 using modified Euler's method.
 - (b) Obtain the Fourier cosine series for $f(x) = \sin x$, $0 < x < \pi$

[8+8]

Page 1 of 2 WWW.MANARESULTS.CO.IN

1"1"11"11"1111

5. (a) Using Runge-Kutta fourth order formula, Find y(0.2) for the equation $y^1 = \frac{y - x}{y + x} y(0) = 1$ taking h=0.1.

(b) Find the Fourier series of
$$f(x) = \begin{cases} \frac{-1}{2}(\pi - x), \text{ for } -\pi < x < 0\\ \frac{1}{2}(\pi - x), \text{ for } 0 < x < \pi \end{cases}$$

6. (a) Find the Fourier sine and cosine transform of $f(x) = \frac{e^{-ax}}{x}$ and deduce that

$$\int_{0}^{\infty} \frac{e^{-ax} - e^{-bx}}{x} \sin sx = \tan^{-1} \left(\frac{s}{a}\right) - \tan^{-1} \left(\frac{s}{b}\right).$$

- (b) Find the inverse Z transform of $\frac{z}{(z+3)^2(z-2)}$.
- 7. (a) Find the Fourier transform of $\frac{1}{\sqrt{|x|}}$.
 - (b) Solve the difference equation using Z- transform $y(n+2)+5y(n+1) + 4y(n) = 2^n$ given that y(0) = 1, y(1) = -4.

[8+8]

[8+8]

[8+8]

|"|""||"|||

I B. Tech II Semester Regular/Supplementary Examinations May - 2016 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E, Textile Engg.) Time: 3 hours Max. Marks: 70

> Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

- 1. (a) Using Bisection method, find a real root of $x^3 6x 4 = 0$ upto 3 approximations.
 - (b) Find the second difference of the polynomial $x^4 12x^3 + 42x^2 30x + 9$.
 - (c) Find the value of y for x = 0.2 by Picard's method, given that $\frac{dy}{dx} = x y$, y(0) = 3 up to 2 approximations.
 - (d) Find the Fourier cosine series of f(x) = (2 x) in [0, 2].
 - (e) If $F_c(p)$ is the Fourier cosine transform of f(x), then prove that $F_c[f(ax)] = \frac{1}{a} F_c\left(\frac{p}{a}\right)$
 - (f) Find the Z-transform of $a^{-n} \sin nt$.

[4+4+4+4+4+2]

PART-B

- 2. (a) Find a positive root of $x^4 x 9 = 0$ by Newton Raphson method.
 - (b) Consider following data

Х	0.1	0.2	0.3	0.4	0.5
g(x)	9.9833	4.9696	3.2836	2.4339	1.9177

And calculate approximately g(0.15) using Netown's Forward Interpolation formula

[8+8]

- 3. (a) Find a real root of $e^{x}sinx = 1$ using regula falsi method.
 - (b) Find f(2.4) from the following data using appropriate interpolation method

х	1.0	1.5	2.5	4.5
f(x)	3	3.375	5.0	12.072

[8+8]

- 4. (a) Given $y^1 = x y$, y(0) = 1. Compute y(0.2) with h = 0.1 using modified Euler's method.
 - (b) Obtain the Fourier sin series for $f(x) = \sin x$, $0 < x < \pi$

[8+8]

Page 1 of 2

WWW.MANARESULTS.CO.IN

|"|""||"||||

5. (a) Using Runge-Kutta fourth order formula, Find y(3) for the equation $y^1 = \frac{x+y}{x} y(2) = 2$ taking h=0.5.

(b) Find the Fourier series, in $-\pi < x < \pi$, of $f(x) = e^{-ax}$.

Hence deduce that

$$\frac{\pi}{\sinh \pi} = 2 \left[\frac{1}{2^2 + 1} - \frac{1}{3^2 + 1} + \frac{1}{4^2 + 1} - \dots \right]$$
[8+8]

6. (a) Find the Fourier transform of $f(x) = e^{-|x|}$ and deduce that $\int_{0}^{\infty} \frac{\cos xt}{1+t^2} dt = \frac{\pi}{2}e^{-|x|}$.

- (b) Find $Z\left[3^n \cos\left(\frac{n\pi}{2} + \theta\right)\right]$
- 7. (a) Prove that $F[x^n f(x)] = (-i)^n \frac{d^n [F(p)]}{dp^n}$
 - (b) Solve the difference equation using Z- transform y(n+2)+2y(n+1)+y(n) = n given that y(0) = 0, y(1) = 0.

[8+8]

[8+8]

Set No - 2

WWW.MANARESULTS.CO.IN

Page 2 of 2

|"|"||"||

I B. Tech II Semester Regular/Supplementary Examinations May - 2016 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E, Textile Engg.) Time: 3 hours Max. Marks: 70

> Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

- 1. (a) Using Bisection method, find a real root of $x^3 4x 9 = 0$ upto 3 approximations.
 - (b) Show that $e^{x}\left(u_{0} + x\Delta u_{0} + \frac{x^{2}}{2}\Delta^{2}u_{0} + ...\right) = u_{0} + u_{1}x + u_{2}\frac{x^{2}}{2} +$

(c) Find the value of y for x = 0.2 by Picard's method, given that $\frac{dy}{dx} = x + 2y$, y(0) = 3 up to 2 approximations.

- (d) Find the Fourier sine series of $f(x) = (\pi x)^2$ in $[0, \pi]$.
- (e) If $F_s(p)$ is the Fourier sine transform of f(x), then prove that $F_s\left[f\left(\frac{x}{a}\right)\right] = aF_s(ap)$
- (f) Find the Z-transform of $a^n \cos nt$.

[4+4+4+4+2]

PART-B

- 2. (a) Find a positive root of the equation $3x = \cos x + 1$ by regula falsi method.
 - (b) Find y(2) given that y(0)=2, y(6)=2.25, y(7)=2.48 and y(8)=2.74. Using Newton's difference formula.
- 3. (a) Find a real root of logx = cosx using Newton Raphson method.
 - (b) Using Lagrange's Interpolation formula find the value of y(10) from the following table

Х	3	7	9	15
y(x)	15	17	14	22

[8+8]

[8+8]

- 4. (a) Given $y^1 = x + \sin y$, y(0) = 1. Compute y(0.2) with h = 0.1 using Euler's method.
 - (b) Obtain the Fourier sin series for $f(x) = \cos x$, $0 < x < \pi$

[8+8]

Page 1 of 2

WWW.MANARESULTS.CO.IN

|"|""||"||"||||

5. (a) Using Runge-Kutta fourth order formula, Find y(0.2) and y(0.4) for the equation

$$y^{1} = \frac{y^{2} - x^{2}}{y^{2} + x^{2}}, y(0) = 1$$
 taking h=0.2

- (b) Find the Fourier series of f(x) = |x| in the interval (-2,2).
- 6. (a) Show that the Fourier transform of $f(x) = \begin{cases} a |x| & \text{for } |x| < a \\ 0 & \text{for } |x| > a > 0 \end{cases}$ is $\sqrt{\frac{2}{\pi}} \left[\frac{1 \cos as}{s^2} \right]$. (b) Find Z - transform of $\frac{1}{(n+3)(n+2)}$. [8+8]

7. (a) Express
$$f(x) = \begin{cases} 1 & \text{for } 0 \le |x| \le \pi \\ 0 & \text{for } |x| > \pi \end{cases}$$
 as Fourier sine integral and hence evaluate
$$\int_{0}^{\infty} \frac{1 - \cos(\lambda \pi)}{\lambda} \sin(x\lambda) d\lambda.$$

(b) Solve the difference equation using Z- transform y(n+2)-3y(n+1) + 2y(n) = 0 given that y(0) = 0, y(1) = 1.

Page 2 of 2 WWW.MANARESULTS.CO.IN

|"|""||"|||

Set No - 3

[8+8]

I B. Tech II Semester Regular/Supplementary Examinations May - 2016 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E, Textile Engg.) Time: 3 hours Max. Marks: 70

> Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

- 1. (a) Using Bisection method, find a real root of $x^3 5x + 3 = 0$ upto 3 approximations.
 - (b) Evaluate $\Delta^{n} e^{ax+b} = (e^{ah} 1)^{n} e^{ax+b}$.
 - (c) Find the value of y for x = 0.2 by Picard's method, given that $\frac{dy}{dx} = 2x y$, y(0) = 3 up to 2 approximations.
 - (d) Find the Fourier cosine series of $f(x) = \pi x$ in $[0, \pi]$.
 - (e) If $F_c(p)$ is the Fourier cosine transform of f(x), then prove that $F_c\left[f\left(\frac{x}{a}\right)\right] = aF_c(ap)$
 - (f) Find the Z-transform of $a^n \sin nt$.

PART-B

- 2. (a) Find a positive root of the equation $2x log_{10} x = 7$ by regula falsi method.
 - (b) The population of a nation in the decinnial census was given below. Estimate the population in the year 1925 using appropriate interpolation formula

Year x	1891	1901	1911	1921	1931
Population y (thousands)	46	66	81	93	101

[8+8]

[4+4+4+4+2]

- 3. (a) Find a real root of xe^{x} cosx=0 using Newton Raphson method.
 - (b) Find Interpolating polynomial by Lagrange's method and hence find f(2) for the following data

Х	0	1	3	4
f(x)	-12	0	6	12

[8+8]

4. (a) Given y¹ = x + sin y, y(0) = 1.Compute y(0.2) with h = 0.1 using modified Euler's method.
(b) Obtain the Fourier cosine series for f(x) = cos x, 0 < x < π

[8+8]

Page 1 of 2

WWW.MANARESULTS.CO.IN

|"|""||"||

- 5. (a) Using Runge-Kutta fourth order formula, Find y(0.1) and y(0.2) for the equation $y^1 = xy + y^2$, y(0) = 1 taking h=0.1.
 - (b) Find the Fourier series of $f(x) = e^x$ in the interval $(0, 2\pi)$.
- 6. (a) Find the inverse Fourier transform f(x) of $F(p)=e^{-|p|y}$. (b) Find Z – transform of. $e^k sink\alpha$ ($k \ge 0$). [8+8]

7. (a) Express
$$f(x) = \begin{cases} 1 & \text{for } 0 \le |x| \le \pi \\ 0 & \text{for } |x| > \pi \end{cases}$$
 as Fourier sine integral and hence evaluate
$$\int_{0}^{\infty} \frac{1 - \cos(\lambda \pi)}{\lambda} \sin(x\lambda) d\lambda.$$

(b) Solve the difference equation using Z- transform $y(n+2)-6y(n+1)+9y(n) = 3^n$ given that y(0) = 0, y(1) = 1.

[8+8]

Page 2 of 2

WWW.MANARESULTS.CO.IN