Subject Code: R13207/R13

I B. Tech II Semester Supplementary Examinations April/May - 2017 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E, Textile

Engg.)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

- 1. (a) Write the working rule to find the root of the equation y= f(x) by False position method.
 - (b) Prove that $(1+\nabla)(1-\nabla) = 1$

(c) By RK method of second order find y (0.3) given that $\frac{dy}{dx} = x - y$, y(0) = 1

- (d) Expand $f(x) = \begin{cases} x, 0 < x < \pi \\ 0, \pi < x < 2\pi \end{cases}$ as Fourier series.
- (e) If $F_s(p)$ is Fourier sine transform of f(x). Then prove that $F_s[f(x)\cos ax] = \frac{1}{2}[F_s(p+a) + F_s(p-a)]$
- (f) Find $Z[a^n]$.

[3+3+4+4+4+4]

PART-B

- 2. (a) Find the root of the equation x³-9x+1 = 0 by using Newton Raphson method.
 (b) Find the root of the equation xe^x = 1 by using bisection method.
- [8+8]
- 3. (a) Find f(2.5) using Newton's forward formula for the following table

Х	0	1	2	3	4	5	6
y=f(x)	0	1	16	81	256	625	1296

(b) Find the Lagrange's polynomial for the following data

Х	0	2	3	6
у	648	704	729	792

[8+8]

4. (a) By modified Euler's method find y (0.2) , y(0.4) given that $\frac{dy}{dx} = y^2 - x$, y(0) = 1

- (b) Obtain Picard's expansion for $\frac{dy}{dx} = x + y$, y(0) = 1, hence evaluate y (0.1).
- [8+8]

[8+8]

- 5. (a) Find the half-range sine series for the function $f(x) = x^2$ in the range 0<x<2.
 - (b) Find the Fourier expansion for $f(x) = \sin x$ in $[0, \pi]$.

WWW.MANARESULTS.CO.IN

|"|""||"||"||||

Set No - 1

Subject Code: R13207/R13

Set No - 1

- 6. (a) Find the Fourier transform of f(x) defined by $f(x) = 1 x^2 1 < x < 1$
 - (b) Find the Fourier cosine transform of e^{-ax} , a > 0 and hence deduce the inversion formula

$$\int_{0}^{1} \frac{1}{a^{2} + p^{2}} dp$$
[8+8]

7. (a) Find the inverse Z – transform of $\left\lfloor \frac{z}{z^2 + 11z + 24} \right\rfloor$ (b) Using Z – transforms, solve $y_{n+2} - 6 y_{n+1} + 9 y_n = 3^n$ with $y_0 = 0$ and $y_1 = 1$. [8+8]

WWW.MANARESULTS.CO.IN

|"|""||"||"||||