Subject Code: R13207/R13
I B. Tech II Semester Regular/Supply Examinations July -2015
MATHEMATICS-II (MATHEMATICAL METHODS)
(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E) Time: 3 hours

Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(a) Define Rate of convergence and what is the rate of convergence of bisection and iteration methods
(b) Find $\Delta \mathrm{f}(\mathrm{x})$ if $f(x)=\frac{2 x+1}{x(x+1)}$ by taking $\mathrm{h}=1$
(c) Write the merits and demerits of Taylor's Method
(d) Find the Fourier series of $f(x)=\operatorname{sinax}$ in $(-\pi, \pi)$
(e) Find the Fourier cosine transform of $\mathrm{f}(\mathrm{x})=1$ in $(0,2)$
(f) Find $Z^{-1}\left[\frac{z^{2}}{z^{2}+1}\right]$
$[3+4+3+4+4+4]$

PART-B

2.(a) Find the real root of $x+\log _{10} x-2=0$ using Newton Raphson method
(b) Find the positive root of the equation $x^{3}-9 x+1=0$ by Bisection Method
3.(a) Compute $y^{1}(4)$ from following table

X	1	2	4	8	10
Y	0	1	5	21	27

(b) Find by Gauss's Backward interpolating formula the value of y at $x=1936$, using the following table:

x	1901	1911	1921	1931	1941	1951
y	12	15	20	27	39	52

4.(a) Find $y(2)$ and $y(3)$ by Picard's method given that $\frac{d y}{d x}=2 x-y, y(1)=3$.
(b) Using Modified Euler's method of fourth order evaluate $y(0.1)$ and $y(0.2)$ given that $y^{1}=x+y, y(0)=1$.

Subject Code: R13207/R13

5.(a) Obtain the Fourier series for the function $\mathrm{f}(\mathrm{x})$ given by $f(x)=\left\{\begin{array}{c}-x(x+\pi) ;-\pi \leq x \leq \pi \\ x(x+\pi) ; 0 \leq x \leq \pi\end{array}\right.$
(b) Obtain the Fourier series expansion of $\mathrm{f}(\mathrm{x})$ given that $f(x)=(\pi-x)^{2}$ in $0<x<2 \pi$ and Deduce the value of $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+--------=\frac{\pi^{2}}{6}$.
6.(a) Find the Fourier cosine transform of $f(x)= \begin{cases}\cos x & \text { if } \\ 0|x|<a \\ 0 & \text { if } \\ |x|>a\end{cases}$
(b) Find the finite Fourier sine and cosine transforms of $f(x)=e^{-a x}$ in $(0, L)$
7.(a) Find $Z^{-1}\left(\frac{2 z}{z^{3}-z^{2}+z-1}\right)$
(b) If $F(z)=\frac{5 z^{2}+3 z+12}{(z-1)^{4}}$; then find the values of $\mathrm{f}(2)$ and $\mathrm{f}(3)$

Subject Code: R13207/R13

I B. Tech II Semester Regular/Supply Examinations July - 2015
 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E) Time: 3 hours

Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(a) Write the working rule to find the root of the equation by bisection method
(b) Evaluate the expression $(1+\Delta)(1-\nabla)$
(c) Write the merits and demerits of Euler's Method
(d) Find the Fourier series of $f(x)=\operatorname{cosax}$ in (-L, L)
(e) Find the Fourier sine transform of $f(x)=1$ in $(0, \pi)$
(f) Find $Z^{-1}\left[\frac{z^{2}}{(z-a)(z-b)}\right]$ using convolution theorem

PART-B

2.(a) Find the positive root of the equation $x^{3}-5 x-7=0$ by False position method
(b) Find the positive root of the equation $\mathrm{e}^{\mathrm{x}}-3 \mathrm{x}=0$ by Newton Raphson method
3.(a) Find $\mathrm{f}(2.5)$ from the following table

x	1.6	1.8	2.0	2.2	2.4	2.6
y	4.95	6.05	7.39	9.03	11.02	13.46

(b) Using Lagrange's formula, calculate $f(3)$ from the table:

x	0	1	2	4	5	6
$f(x)$	1	14	15	5	6	19

4.(a) Using Taylor's series method: Solve $y^{\prime}=x y+y^{2}, y(0)=1$ at $x=0.1,0.2,0.3$
(b) Solve: $y^{\prime}=y-x, y(0)=2, h=0.2$ find $\mathrm{y}(0.2)$, using R- K method.
5.(a) Develop the Fourier series of $f(x)=\left\{\begin{array}{c}2 ;-2 \leq x \leq 0 \\ x ; 0 \leq x \leq 2\end{array}\right.$
(b) If $f(x)=|\cos x| ;$ Expand $\mathrm{f}(\mathrm{x})$ as a Fourier series in the interval $(-\pi, \pi)$

Page 1 of 2

WWW.MANARESULTS.CO.IN

Subject Code: R13207/R13

6.(a) Find Fourier Sine transform $f(x)=\frac{1}{\left(x^{2}+1\right)}$
(b) Express the function $f(x)=\left\{\begin{array}{l}0 ; x<0 \\ \frac{1}{2} ; x=0 \\ e^{-x} ; x>0\end{array} \quad\right.$ as a Fourier integral.
7.(a) Solve the difference equation $y_{n+2}-2 y_{n+1}+y_{n}=3 n+5$ if $y_{0}=1, y_{1}=-4$. by Z -transforms
(b) Find the Z- transform of the following $(i) n^{2} e^{-a n}$ (ii) $(n+1)^{2}$ (iii) $a^{n} \sin (n t)$

Subject Code: R13207/R13

I B. Tech II Semester Regular/Supply Examinations July - 2015

MATHEMATICS-II (MATHEMATICAL METHODS)
(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E) Time: 3 hours

Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(a) Write the working rule to find the root of the equation by Newton Raphson method
(b) Find $\left(\frac{\Delta^{2}}{E}\right) x^{3}$
(c) Write the working rule to solve the $y^{1}=f(x, y) y\left(x_{0}\right)=y_{0}$ by Picard's method
(d) Find the half range sine series of $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$ in $(0, L)$
(e) Find the Fourier transform of $f(x)=1$ in (-1, 1)
(f) Find $Z[\sin (n+1) \theta]$ using shifting theorem

$$
[3+4+3+4+4+4]
$$

PART-B

2.(a) Find the root of the equation: $x^{3}=2 x+5$ by iteration method.
(b) Find the real root for $x e^{x}=2$ by using Regula - Falsi method.
3.(a) Using Lagrange's formula fit a polynomial to the following data

x	0	1	4	5
y	4	3	24	39

(b) Estimate $\mathrm{f}(1.75)$ from the following table using Newton forward interpolation formula

x	1.7	1.8	1.9	2.0
y	5.474	6.050	6.686	7.389

4.(a) Using Runge Kutta method of fourth order evaluate $y(0.1)$ and $y(0.2)$ given that $y^{1}=x+y, y(0)=1$
(b) Apply Taylor series methods to find $\mathrm{y}(1.1), \mathrm{y}(1.2)$ correct to 3 decimal places, given
$\frac{d y}{d x}=x y^{1 / 3}, y(0)=1$.

Subject Code: R13207/R13

5.(a) Obtain the Fourier series of $f(x)=\sqrt{1-\cos x}$ in $(-\pi, \pi)$
(b) Expand $f(x)=\left\{\begin{array}{l}\frac{1}{4}-x ; 0 \leq x \leq 1 / 2 \\ x-\frac{3}{4} ; 1 / 2 \leq x \leq 1\end{array} \quad\right.$ as a Fourier series of sine terms.
6.(a) Find Fourier transform of $f(x)=e^{-a|x|} \quad(\mathrm{a}>0)$ and hence show that $\int_{0}^{\infty} \frac{\cos (s x)}{a^{2}+s^{2}} d s=\frac{\pi}{2 a} e^{-a|x|}$
(b) Find the finite Fourier cosine transform of

$$
\begin{equation*}
\text { i) } f(x)=\frac{x^{2}}{2 \pi}-\frac{\pi}{6}, 0 \leq \mathrm{x} \leq \pi \quad \text { ii) } f(x)=x, 0<x<4 \tag{8+8}
\end{equation*}
$$

7.(a) Using Z- Transform solve $y_{n+1}+2 y_{n+1}+y_{n}=n$; Given that $\mathrm{y}_{0}=\mathrm{y}_{1}=0$;
(b) Using $Z\left(n^{2}\right)=\frac{z^{2}+z}{(z-1)^{3}}$ prove that $Z\left((n+1)^{2}\right)=\frac{z^{3}+z^{2}}{(z-1)^{3}}$

Subject Code: R13207/R13

I B. Tech II Semester Regular/Supply Examinations July - 2015

MATHEMATICS-II (MATHEMATICAL METHODS)
(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E) Time: 3 hours

Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(a) What is mean by quadratic convergence and derive the convergence condition for Newton Rapson method.
(b) Find $\Delta \mathrm{f}(\mathrm{x})$ if $\mathrm{f}(\mathrm{x})=f(x)=\frac{1}{\left(x^{2}+5 x+6\right)}$ by taking $\mathrm{h}=1$
(c) Write the working rule to solve the $y^{1}=f(x, y) y\left(x_{0}\right)=y_{0}$ by RK method of third order
(d) Find the half range cosine series of $f(x)=x$ in $(0, \pi)$
(e) Find the Finite Fourier cosine transform of $f(x)=1$ in $(0, \pi)$
(f) Find $Z[\cos (n+1) \theta]$ using shifting theorem

PART-B

2.(a) Evaluate $\sqrt{12}$ and $\frac{1}{\sqrt{12}}$ by the fixed point iteration method.
(b) Find a root correct to 3 decimal places for the equation $x^{3}-4 x+9=0$ using Bisection method
3.(a) Certain values of x and $\log _{10}^{x}$ are (300,2.4771),(304,2.4829),(305,2.4843),(307,2.4871). Find $\log _{10}^{301}$
(b) Using Lagrange's Interpolation formula evaluate $\mathrm{y}(6)$.

x	3	5	7	9	11
y	6	24	58	108	74

4.(a) Given $\frac{d y}{d x}-\sqrt{x y}=2$ and $\mathrm{y}(1)=1$. Find the value of $\mathrm{y}(1.5)$ in steps of 0.25 using Euler's modified method.
(b) Use Runge-Kutta method to solve $\frac{d y}{d x}=x y+y^{2}, y(0)=1$ for $y(0.1)$ and $y(0.2)$.

Page 1 of 2

5.(a) Obtain Fourier series for the function $\mathrm{f}(\mathrm{x})$ given by $f(x)=\left\{\begin{array}{l}1+\frac{2 x}{\pi},-\pi \leq x \leq 0 \\ 1-\frac{2 x}{\pi}, 0 \leq x \leq \pi\end{array}\right.$
and deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \ldots \ldots . .=\frac{\pi^{2}}{8}$
(b) If $f(x)=\left\{\begin{array}{c}x ; 0<x<\pi / 2 \\ \pi-x ; \pi / 2<x<\pi\end{array}\right.$

Show that $f(x)=\frac{\pi}{4}-\frac{2}{\pi}\left[\frac{1}{1^{2}} \cos 2 x+\frac{1}{3^{2}} \cos 6 x+\frac{1}{5^{2}} \cos 10 x+------\right]$
6.(a) Show that the Fourier transform of $f(x)=\left\{\begin{array}{c}a-|x|, \text { for }|x|<a \\ 0, \text { for }|x|>a\end{array}\right.$ is $\sqrt{\frac{2}{\pi}}\left(\frac{1-\cos a s}{s^{2}}\right)$

Hence deduce that $\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{2}=\frac{\pi}{2}$
(b) Find the finite Fourier sine transform of $\mathrm{f}(\mathrm{x})$ defined by $f(x)=\left(1-\frac{x}{\pi}\right)^{2}$ where $0<\mathrm{x}<\pi$
7.(a) Solve the difference equation $y_{n+2}-2 y_{n+1}+y_{n}=2^{n}$ if $y_{0}=2, y_{1}=1$. by Z -transforms
(b) Find $Z^{-1}\left[\frac{z^{3}}{(z-3)\left(z^{2}+1\right)}\right]$ using the convolution theorem.

