I B. Tech II Semester Supplementary Examinations, April/May - 2018
 ENGINEERING MECHANICS
 (Com. to ECE, EEE, EIE, Bio-Tech,E Com E, Agri E)

Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any THREE Questions from Part-B

PART -A

1. a) Define and explain the moment of a force. Differentiate between clockwise moment and anti-clockwise moment.
b) Explain and define the term: free body diagram. Draw the free body diagram of a ball of weight W , placed on a horizontal surface.
c) Define centre of gravity and centroid.
d) State the theorem of perpendicular axis.
e) What are the differences between "kinematics" and "kinetics"?
f) Write the work-energy equation in case of fixed axis rotation.

PART -B

2. a) Five forces are acting on a body as shown in figure. Determine the resultant.

b) A uniform ladder of length 13 m and weighing 30 N is placed against a smooth vertical wall with its lower end 10 m from the wall. In this position the ladder is just to slip. Determine:
i) The coefficient of friction between the ladder and the floor and
ii) Frictional force acting on the ladder at the point of contact between ladder and floor.
3. a) Three forces of magnitudes $P, 100 \mathrm{~N}$ and 200 N are acting at a point O as shown in figure. Determine the magnitude and direction of the force P.

b) A circular roller of radius 5 cm and of weight 100 N rests on a smooth horizontal surface and is held in position by an inclined bar $A B$ of length 10 cm as shown in figure. A horizontal force of 200 N is acting at B. Find the tension (or force) in the bar AB and the

4. a) Find the centre of gravity of the L-section shown in figure.

b) From a circular plate of diameter 100 mm a circular part of diameter 50 mm is cut as shown in figure. Find the centroid of the remainder.

5. a) Find the mass moment of inertia of an aluminum pipe of 120 mm outer diameter and 90 mm inner diameter and 2.5 m height about its longitudinal axis. (density, $\rho=2560 \mathrm{~kg} / \mathrm{m}^{3}$).
b) For the I-section shown in figure, find the moment of inertia about the centroidal axis X -X perpendicular to the web.

6. a) Two cars are travelling towards each other on a single lane road at the velocities $12 \mathrm{~m} / \mathrm{s}$ and $9 \mathrm{~m} / \mathrm{s}$ respectively. When 100 m apart, both drives realize the situation and apply their brakes. They succeed in stopping simultaneously and just start of colliding. Determine i) The time required to cars to stop; ii) Distance travelled by each car while slowing down; iii) Deceleration of each car.
b) A pulley of weight 400 N has a radius of 0.6 m . A block of 600 N is suspended by a rope wound round the pulley as shown in figure. Determine the resulting acceleration of the weight and tension in the rope.
 36 kmph . Find the power exerted by the engine, if the road resistance is 5 N per kN weight of the train.
b) A block of weight 10 N falls on a spring with stiffness $1 \mathrm{kN} / \mathrm{m}$ from a height of 1 m . Determine the maximum deflection in the spring, if the resulting motion is vertical.

(9M)
