I B. Tech II Semester Supplementary Examinations Dec - 2016 ENGINEERING MECHANICS

(Com. to ECE, EEE, EIE, BOT, E Com E, AGE)
Time: $\mathbf{3}$ hours

Max. Marks: 70

Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1. a) Two forces 15 N and 12 N are acting at a point. The angle between the forces is 60°. Find the magnitude and direction of the resultant.
b) Explain Lami's Theorem.
c) Differentiate between Centroid and Center of gravity.
d) Define the terms Moment of inertia and polar moment of inertia.
e) A car is travelling along a circular curve that has a radius of 50 m . If its speed is $16 \mathrm{~m} / \mathrm{s}$ and is increasing uniformly at $8 \mathrm{~m} / \mathrm{s}^{2}$, determine the magnitude of its acceleration at this instant.
f) Discuss when you would prefer work-energy, impulse-momentum formulations.

PART-B

2. a) What do you understand by Limiting friction?
b) Find the sum of moment about center O of the force and couple acting on the rectangle plate as shown in the figure.

3. a) Explain free body diagram?
b) An electric light weighing 15 N hangs from a point C by the two strings AC and BC as shown in the figure. AC is inclined at 60° to the horizontal and BC at 45° to the vertical as shown. Using Lami's theorem find the forces in the strings AC and BC.

WWW. MANAREST̛TTS.CO.IN
4. a) Determine the centroid of the quarter circle whose radius is R .
b) Determine the centroid of the shaded portion given in the figure (All dimensions in mm).

5. a) Determine the product of inertia for right angle triangle of base ' b ' and altitude ' h '.
b) Determine the polar Moment of Inertia of the shaded area with respect to and axis through the origin (All dimensions in mm).

6. a) When the angular velocity of a 1.2 m diameter pulley is $3 \mathrm{rad} / \mathrm{s}$, the total acceleration of a point on its rim is $9 \mathrm{~m} / \mathrm{s}^{2}$, determine angular acceleration of the pulley at this instance.
b) A ball projected vertically upwards attains a maximum height of 440 m . Calculate the velocity of projection and compute the time of flight of air. At what altitude will this ball meet a second ball projected vertically upwards 4 seconds later with a speed of $120 \mathrm{~m} / \mathrm{s}$.
7. a) A flywheel having weight 50 kN and having radius of gyration is 1 m and its speed varies from 400 rpm to 280 rpm in 2 min . Calculate the (i) change in kinetic energy and (ii) change in angular momentum.
b) The 10 kg slider A moves with negligible friction up the inclined guide. The attached spring has stiffness of $60 \mathrm{~N} / \mathrm{m}$ and is stretched 0.6 m in position A where the slider is released from rest. The 250 N is constant and the pulley offers negligible resistance to the motion of the cord as shown in the figure. Determine the velocity of the slider as it moves from A to B.

