I B. Tech II Semester Supplementary Examinations, December - 2020 ENGINEERING MECHANICS
(Com. to ECE, EEE, EIE, Bio-Tech, E Com E, Agri E)
Max. Marks: 70
Time: 3 hours
Note: 1. Question paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any THREE Questions from Part-B

PART -A

1. a) Explain Coulomb's law of dry friction.
b) Discuss the law of converse of the polygon of forces.
c) What is the centroid of a right angle triangle of base 90 cm and height 120 cm ?
d) State transfer theorem for area moment of inertia.
e) Discuss the differences between curvilinear and rectilinear motions.
f) Write the work-energy equation in case of
(i) fixed axis rotation;
(ii) Translation.

PART -B

2. a) How will you prove that a body will not be in equilibrium when the body is subjected to two forces which are equal and opposite but are parallel?
b) A pull of 60 N inclined at 25° to the horizontal plane, is required just to move a body placed on a rough horizontal plane. But the push required to move the body is 75 N . If the push is inclined at 25^{0} to the horizontal, find the weight of the body and coefficient of friction.
3. a) The resultant of two concurrent forces is 2500 N and the angle between the forces is 90°. The resultant makes an angle of 46° with one of the forces. Find the magnitude of each force.
b) An electric light weighing 15 N hangs from a point C by the two strings AC and BC as shown in the figure. AC is inclined at 60° to the horizontal and BC at 45^{0} to the vertical as shown. Find the forces in the strings AC and BC .

4. a) State and prove Pappus theorems.
b) Determine the centre of gravity of a solid right circular cone of radius `R` and height `h'.

Code No: R13210
5. a) Derive an equation for moment of inertia of a Quarter circles.
b) Determine the Moment of Inertia of the following section about the centroidal XX-axis.

6. a) A wheel has an initial clock wise angular velocity of $8 \mathrm{rad} / \mathrm{s}$ and a constant angular acceleration of $2 \mathrm{rad} / \mathrm{s}^{2}$. Determine the number of revolutions the wheel must undergo to acquire a clockwise angular velocity of $15 \mathrm{rad} / \mathrm{s}$. What is the time required.
b) Two trains P and Q leave the same station on parallel lines. Train P starts at rest with uniform acceleration of $0.2 \mathrm{rad} / \mathrm{s}^{2}$ attains a speed of $10 \mathrm{~m} / \mathrm{s}$. Further the speed is kept constant. Train Q leaves 30 seconds later with uniform acceleration of $0.5 \mathrm{~m} / \mathrm{s}^{2}$ from rest and attains a maximum speed of $20 \mathrm{~m} / \mathrm{s}$, when will train Q overtake train P .
7. a) A ball of mass M starts sliding from position A, at a height H from the datum. Determine the expression of velocity V_{B}, when the ball reaches B, using the principle of energy, and prove that this is invariant to the mass of the body.

b) A body of weight 2000 N moves on a level horizontal rough road for a distance of 200 m . The resistance of the road is 10 N per 1000 N weight of the body. Find the work done by the resistance on the body.

