

I B. Tech II Semester Supplementary Examinations, Nov/Dec - 2017 NETWORK ANALYSIS

(Comm. to ECE, EIE & E COM. E)

Time: 3 hours

Max. Marks: 70

(4M)

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. Answering the question in **Part-A** is Compulsory

3. Answer any **THREE** Questions from **Part-B**

<u>PART –A</u>

- 1. a) A linear network has a current input 15 Cos $(10t + 30^{\circ})$ A and a voltage output (3M) 230 Cos $(10t + 75^{\circ})$ V. Determine the associated Impedance.
 - b) Find current I_o in the circuit shown in below Figure.

- c) A series RLC circuit consists of a resistance of 1 k Ω , an inductance of 10 mH (3M) and a capacitance of 100 μ F. For a supply voltage of 100V, determine the Resonant frequency.
- d) State and explain Superposition theorem with a simple example. (4M)
- e) Use Thevenin's theorem to replace the three loop equivalent circuit of below (4M) figure by a single loop equivalent circuit in which the identity of R_L is preserved.

f) The Z parameters of a two-port network are $Z_{11} = 20 \Omega$, $Z_{22} = 30 \Omega$, $Z_{12} = Z_{21} = 10$ (4M) Ω . Had parameters Ω . IN

|"|""||"||"||||

<u>PART –B</u>

2. a) Calculate the effective resistance between the points A and B in the circuit shown (8 M) in Fig.

b) What value of ω will cause the forced response, V_o, in Fig. to be zero (8 M)

3. a) For the network of Fig. write directly the mesh current equation in matrix notation (8M) and hence determine I_1 and I_2

b) Show that power consumed by pure inductance and capacitance is zero. WWW.MANARESULTS.CO.IN

(8M)

|"|""||"||"||||

Code No: R13211

(8M)

4. a) A 480 V, 60Hz source supplies energy to a parallel circuit consisting of $Z_1 = 25$ (8M) $\angle 30^0 \Omega$ branch and $Z_2 = 12\angle -40^0 \Omega$ branch. Find the impedance Z if connected in series with the source that cause the system to be in resonance.

b) Determine the equivalent L_{eq} in the circuit of Figure.

5. a) (i) For the circuit in Fig., obtain the Thevenin equivalent at terminals a-b (16M) (ii) Calculate the current in $R_L = 8\Omega$

- (iii) Find R_L for maximum power deliverable to R_L
- (iv) Determine that maximum power

WWW.MANARESULTS.CO.IN

|"|""||"||"||||

6. a) Find the transmission parameters for the network shown in fig.

b) Find Z-parameters for the net work shown in Fig

7. a) The switch in the circuit of fig. is moved from the position 1 to 2 at t = 0. Find Vc (12M) (t)

b) Discuss the behavior of R, L and C elements during transient state and steady (4 M) state.

4 of 4

WWW.MANARESULTS.CO.IN

(8M)

(8M)