I B. Tech II Semester Supplementary Examinations, Nov/Dec - 2017 NETWORK ANALYSIS
(Comm. to ECE, EIE \& E COM. E)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any THREE Questions from Part-B

PART -A

1. a) A linear network has a current input $15 \operatorname{Cos}\left(10 t+30^{\circ}\right) \mathrm{A}$ and a voltage output $230 \operatorname{Cos}\left(10 t+75^{0}\right) \mathrm{V}$. Determine the associated Impedance.
b) Find current I_{0} in the circuit shown in below Figure.

c) A series RLC circuit consists of a resistance of $1 \mathrm{k} \Omega$, an inductance of 10 mH and a capacitance of $100 \mu \mathrm{~F}$. For a supply voltage of 100 V , determine the Resonant frequency.
d) State and explain Superposition theorem with a simple example.
e) Use Thevenin's theorem to replace the three loop equivalent circuit of below
figure by a single loop equivalent circuit in which the identity of R_{L} is preserved.

f) The Z parameters of a two-port network are $\mathrm{Z}_{11}=20 \Omega, \mathrm{Z}_{22}=30 \Omega, \mathrm{Z}_{12}=\mathrm{Z}_{21}=10$

PART -B

2. a) Calculate the effective resistance between the points A and B in the circuit shown in Fig.

b) What value of ω will cause the forced response, V_{o}, in Fig. to be zero

3. a) For the network of Fig. write directly the mesh current equation in matrix notation and hence determine I_{1} and I_{2}

b) Show that power consumed by pure inductance and capacitance is zero.
4. a) A $480 \mathrm{~V}, 60 \mathrm{~Hz}$ source supplies energy to a parallel circuit consisting of $\mathrm{Z}_{1}=25$ $\angle 30^{\circ} \Omega$ branch and $Z_{2}=12 \angle-40^{\circ} \Omega$ branch. Find the impedance Z if connected in series with the source that cause the system to be in resonance.

b) Determine the equivalent L_{eq} in the circuit of Figure.

5. a) (i) For the circuit in Fig., obtain the Thevenin equivalent at terminals a-b
(ii) Calculate the current in $\mathrm{R}_{\mathrm{L}}=8 \Omega$
(iii) Find R_{L} for maximum power deliverable to R_{L}
(iv) Determine that maximum power

Code No: R13211

R13

SET-1
6. a) Find the transmission parameters for the network shown in fig.

b) Find Z-parameters for the net work shown in Fig

7. a) The switch in the circuit of fig. is moved from the position 1 to 2 at $t=0$. Find Vc (t)

b) Discuss the behavior of R, L and C elements during transient state and steady state.

4 of 4

