I B. Tech II Semester Supplementary Examinations, November - 2021
 NETWORK ANALYSIS
 (Com. to ECE, EIE, E Com E)

Time: 3 hours
Max. Marks: 70

Note: 1. Question paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is Compulsory
 3. Answer any THREE Questions from Part-B

PART -A

1. a) What is the difference between active and passive element?
b) Given $v(t)=20 \cos \left(\omega t-45^{\circ}\right) \mathrm{V}$ and $i(t)=10 \sin \left(\omega t-80^{\circ}\right) \mathrm{A}$, determine which variable leads the other and by what angle.
c) How do you use dot convention for ideal transformer circuit?
d) Describe briefly Reciprocity theorem with an example?
e) Define h-parameters? How do you obtain inverse h-parameters?
f) Obtain the natural response of RC series circuit?

PART -B

2. a) By using the mesh analysis determine all branch currents and voltage, V_{X} of the circuit shown in figure.

Figure
b) (i) Derive the dual of the circuit of figure, (ii) represent the two circuits in the dc steady state; (iii) compare voltage division in the given circuit with current division in the dual circuit; (iv) compare the power delivered or absorbed by each circuit element in the two circuits.

Figure
1 of 4
|"|'|"|"|"|||'|| WWW. . manaresults. Co.in

Code No: R13211
3. a) In the circuit shown in the figure, Find $v_{o}(t)$.

Figure
b) For each of the following cases, find the complex power, the average power, and the reactive power:
(i) $\quad v(t)=112 \cos \left(\omega t+10^{\circ}\right) \mathrm{V}$,
(ii) $\quad v(t)=160 \cos 377 t \mathrm{~V}$,
$i(t)=4 \cos \left(\omega t-50^{\circ}\right) \mathrm{A}$
$i(t)=4 \cos \left(377 t+45^{\circ}\right) \mathrm{A}$
(iii) $\mathbf{V}=80 \angle 60^{\circ} \mathrm{V}$ rms, $\mathbf{Z}=50 / 30^{\circ} \Omega$
(iv) $\mathbf{I}=10 \angle 60^{\circ} \mathrm{V} \mathrm{rms}, \mathbf{Z}=100 \angle 45^{\circ} \Omega$
4. a) Find I_{1} and I_{2} in the circuit of below figure. Calculate the power absorbed by the 4 Ω resistor.

Figure
b) It is expected that a parallel $R L C$ resonant circuithas a mid-band admittance of 25 $\times 10^{3} \mathrm{~S}$, qualityfactor of 80 , and a resonant frequency of $200 \mathrm{krad} / \mathrm{s}$. Calculate the values of R, L, and C. Find the bandwidth and the half-power frequencies.
5. a) Use superposition to obtain V_{x} in the circuit shown in figure.

Figure
2 of 4
|"|"|"|"|||"|| www.manaresults.co.in
b) Determine V_{X} and maximum power transfer across the terminals 'ab', as shown in the figure, by deriving thevenin's equivalent circuit, where ' N_{A} ' in the circuit that passes a current of 0.5 A .

Figure
6. a) For a two-port, let $\mathrm{A}=4, \mathrm{~B}=30, \mathrm{C}=0.1 \mathrm{~S}$, and $\mathrm{D}=1.5$. Calculate the input impedance $Z_{i n}=V_{1} / I_{1}$, when, (i) the output terminals are short-circuited, (ii) the output port is open-circuited, (iii) the output port is terminated by a $10-\Omega$ load.
b) A series-parallel connection of two two-ports is shown in figure. Determine the zparameterrepresentation of the network.

Figure
7. a) The switch in figure is opened at $t=0$ after being closed for a long time.

Determine $I_{L}(0+)$ and $v_{o}(t)$

Figure
3 of 4
|"I"|"|"|||||| www.manaresults.co.in
b) The switch in figure is moved to position ' b ' at $t=0$ after being in position ' a ' for $\quad(8 \mathrm{M})$ a long time. Determine the final values of i_{1} and i_{2}

Figure

4 of 4

