(7M)

(7M)

I B. Tech I Semester Supplementary Examinations, March – 2022 MATHEMATICS-II (MM)

(Com to AE, AME, Bio Tech, Chem. E, CE, EEE, ME, Metal E, Min E, PCE, PE)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer ALL the question in Part-A
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

- 1. a) Find the interval of existence of equation $x^4 = x + 10$ (2M)
 - b) Write a formula for the half range cosine series of f(x) in [0,2] (2M)
 - c) Write a formula for the Fourier cosine transform (2M)
 - d) Find $\Delta(\sin 2x)$ if h = 1 (2M)
 - e) Find y(1.2) given that by Euler's method $\frac{dy}{dx} = 2x + y$, y(1) = 1 (2M)
 - f) What are the advantages of RK method (2M)
 - g) Write D Alembert's solution of wave equation (2M)

PART -B

- 2. a) Find the Real root of $e^x \sin x = 1$ using False position method (7M)
 - b) Find the Real root of x^3 -x- 4=0 using Iteration method (7M)
- 3. a) Find the Lagrange's polynomial for the following data

X	0	1	2
у	1	2	3

b) Find y(1.5) from the following data

X	1	2	3	4
У	20	35	45	60

- 4 a) Evaluate $\int_0^{\frac{\pi}{2}} \sin x dx$ using Simpson's $1/3^{\text{rd}}$ rule (7M)
 - b) Using RK method of second order find y(0.1), y(0.2) given that $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0 (7M)

Code No: R161202

R16

SET - 1

- 5. a) Find the Fourier series of $f(x) = \begin{cases} x + \pi & -\pi < x < 0 \\ x \pi & 0 < x < \pi \end{cases}$ (7M)
 - b) Find the Half range sine series of $f(x) = \begin{cases} 1 x & 0 < x < 1 \\ x 2 & 1 < x < 2 \end{cases}$ (7M)
- 6. a) Solve the PDE $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial y} + 2u$ by the method of variable separable method
 - Derive the four conditions to Solve the wave equation $\frac{\partial^2 y}{\partial x^2} = c^2 \frac{\partial^2 y}{\partial t^2}$ (7M)
- 7. a) Do the Fourier sine and cosine transform exist for e^x (7M)
 - b) Find the Fourier integral representation of $f(x) = \begin{cases} 1 x^2 & \text{if } |x| \le 1 \\ 0 & \text{if } |x| > 1 \end{cases}$ (7M)

2 of 2