

I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2018 MATHEMATICS-II (MM)

(Com to CE,EEE,ME,AE,AME,Bio-Tech,Chem E,Metal E,Min E,PCE,PE)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. Answer **ALL** the question in **Part-A**

3. Answer any FOUR Questions from Part-B

PART -A

1.	a)	Write the iteration formula to find \sqrt{N} using Newton Raphson method.	(2M)
	b)	Prove that $\mu \delta = \frac{1}{2} [\Delta + \nabla]$	(2M)
	c)	Write the formula for RK method of second order.	(2M)
	d)	Write Simpson's 1/3 rd Rule.	(2M)
	e)	Find the value of a_0 for $f(x) = \begin{cases} 1 & 0 < x < \frac{\pi}{2} \\ -1 & \frac{\pi}{2} < x < \pi \end{cases}$	(2M)
	f)	State Linear property in Fourier Transform.	(2M)
	g)	Write the equation for the PDE $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ by variable separable method.	(2M)
		<u>PART -B</u>	
2.	a)	Find the root of the equation $x^3-6x-4=0$ using iteration method.	(7M)
	b)	Find the root of the equation $2x-\log_{10} x=7$ using False position method.	(7M)

- 3. a) Find the parabola passing through the points (0,1), (1,3) and (3,55) using (7M) Lagrange's interpolation formula.
 - b) Area A of circle and diameter d is given for the following values (7M)

d	80	85	90	95	100
А	5026	5674	6362	7088	7854

Calculate the area of circle of diameter 105.

4. a) Evaluate y (0.1) using RK method of fourth order for
$$\frac{dy}{dx} = y - \frac{2x}{y}$$
, $y(0) = 1$ (7M)

b) Evaluate y (0.1), y(0.2) using Picard's method for
$$\frac{dy}{dx} = x + y$$
, $y(0) = 1$ (7M)

5. a) Find the Fourier series of
$$f(x) = \begin{cases} 1 + \frac{2x}{\pi} & \text{if } -\pi \le x < 0\\ 1 - \frac{2x}{\pi} & \text{if } 0 \le x < \pi \end{cases}$$
 (7M)

Hence deduce that
$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$

b) Find the Half range sine series of
$$f(x) = x^2$$
 in [0,2] (7M)

6. a) Using Fourier integral, Show that
$$\int_{0}^{\infty} \frac{\cos \lambda x + \lambda \sin \lambda x}{1 + \lambda^2} d\lambda = \begin{cases} 0 & \text{if } x < 0\\ \pi e^{-x} & \text{if } x > 0 \end{cases}$$
(7M)

b) Find the Fourier cosine transform of $\frac{1}{1+x^2}$ and hence deduce Fourier sine (7M) transform $\frac{x}{1+x^2}$

7. a) Solve the PDE
$$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$$
 where $u(0, x) = 8e^{-3y}$ (7M)

b) A tightly stretched string with fixed end points at x = 0 and x = 1 is initially in a (7M) position given by

$$f(x) = \begin{cases} x & 0 < x < \frac{1}{2} \\ 1 - x & \frac{1}{2} < x < 1 \end{cases}$$

If it is released from this position with velocity zero find the displacement u(x, t) at any point of x of the string at any time is t > 0.

2 of 2

I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2018 MATHEMATICS-II (MM) (Com to CE, EEE, ME, AE, AME, Bio-Tech, Chem E, Metal E, Min E, PCE, PE) Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B ~~~~~~~~

PART –A

1.	a)	Find two iterations of $x = \cos x$ using bisection method.	(2M)
	b)	Prove that $\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$	(2M)
	c)	Write Trapezoidal Rule.	(2M)
	d)	Write the Dirichlet conditions for Fourier series.	(2M)

e) Find the value of
$$a_n$$
 for $f(x) = \begin{cases} 1 & 0 < x < \frac{1}{2} \\ -1 & \frac{1}{2} < x < 1 \end{cases}$ (2M)

f)	State modulation property in Fourier transforms.	(2M)
----	--	------

g) Write two dimensional steady state equation. (2M)

PART -B

2.	a)	Find the root of the equation $x e^{x} = 2$ using Newton Raphson method.	(7M)
	~		(, 1, 1)

b) Find the root of the equation $3x = 1 + \cos x$ using False position method. (7M)

Find the Lagrange's polynomial for the following data, hence find y(15). 3. a) (7M) -5 6 9 11 Х 12 13 14 16 y

b) Find y(23) for the following data using Gauss Forward interpolation formula. (7M) 10 20 30 40 50 Х 9.21 92.51 17.54 31.82 55.32 v

4. a) Evaluate y (0.1) using RK method of fourth order for
$$\frac{dy}{dx} = y + xe^x$$
, $y(0) = 1$ (7M)

b) Evaluate y (0.1) using Taylor's method for
$$\frac{dy}{dx} = x + y^2$$
, $y(0) = 1$ (7M)

www.ManaResults.co.in

Time: 3 hours

Code No: R161202

R16

SET - 2

5. a) Find the Fourier series of
$$f(x) = \sinh x$$
 in $-\pi < x < \pi$ (7M)

$$\begin{cases} x & 0 < x < \frac{l}{2} \end{cases}$$

b) Find the half range sine series of
$$\begin{cases} f(x) = \begin{cases} 2 \\ l-x & \frac{l}{2} < x < l \end{cases}$$
(7M)

6. a) Using Fourier cosine integral, show that
$$\frac{\pi}{2}e^{-x} = \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^2 + 1} d\lambda$$
 (7M)

b) Find the Fourier sine transform of the function f(x) = x in $(0,\infty)$ (7M)

7. a) Solve
$$4\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = 3z$$
 and $z(0, y) = e^{-5y}$ (7M)

b) Find the temperature u(x, t) in a homogenous bar of heat conducting method of (7M) length '*l*' whose ends are kept at 0° c and whose initial temperature is $\frac{ax}{l^2}(l-x)$

I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2018 MATHEMATICS-II (MM)

(Com to CE,EEE,ME,AE,AME,Bio-Tech,Chem E,Metal E,Min E,PCE,PE)

Гime	e: 3	hours	Max. Marks: 70
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B 	
		<u>PART –A</u>	
l. a	a)	Find two iterations of $x e^{x} = 2$ using False position method.	(2M)
ł	b)	Show that $\nabla = 1 - E^{-1}$	(2M)
(c)	Evaluate y (0.1) by Euler's method for $\frac{dy}{dx} = \frac{x+y}{y-x}$, y(0) = 1.	(2M)
C	d)	dx = y - x Write Simpson's 3/8 th Rule.	(2M)
e	e)	Find the value of \mathbf{b}_n for $f(x) = \begin{cases} 1 & 0 < x < \frac{\pi}{2} \\ -1 & \frac{\pi}{2} < x < \pi \end{cases}$	(2M)
f	f)	Write shifting theorem in Fourier transforms.	(2M)
Ę	g)	Write one dimensional heat equation.	(2M)
		PART -B	
2. a	a)	Find the root of the equation x^4 - 10 = x using Bisection method.	(7M)
t	b)	Find the root of the equation xtanx+1=0 using Newton Raphson method.	(7M)
в. г	a)	Find the Lagrange's polynomial for the following data.	(7M)
		x 0 2 3 6	
		y 648 704 729 792	
ł	b)	Fit a $y(0.5)$ the following data using Newton Forward interpolation formu	la. (7M)
		x -1 0 1 2	
		y 10 5 8 10	
I. a	a)	$\frac{x}{y} = \frac{-1}{10} = \frac{0}{5} = \frac{1}{8} = \frac{2}{10}$ Evaluate $\int_{0}^{2} \frac{1}{1+x} dx$ by taking h = 0.1 by	(7M)
		(i) Trapezoidal rule.	
		(ii) Simpson's 1/3 rd rule	
ł	b)	Evaluate y (0.1) using Modified Euler's method for $\frac{dy}{dt} = x^2 + y^2$, y(0) = 1	(7M)
		Evaluate y (0.1) using Modified Euler's method for $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 WWW.ManaResults.co.in	

5. a) Find the Half range cosine of
$$f(x) = \begin{cases} kx & 0 < x < \frac{\pi}{2} \\ k(\pi - x) & \frac{\pi}{2} < x < \pi \end{cases}$$
 (7M)

b) Find the Fourier series of
$$f(x) = \frac{\pi - x}{2}$$
 in $0 < x < 2$ (7M)

6. a) Express the
$$f(x)$$
 defend by $f(x) = \begin{cases} 1 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$ as a Fourier integral (7M)

Hence Evaluate
$$\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$$

b) Find Fourier transform of
$$f(x) = e^{-x^2}, -\infty < x < \infty$$
 hence evaluate
(i) $F\left(e^{-\frac{x^2}{3}}\right)$ (ii) $F\left(e^{-4(x-3)^2}\right)$

7. a) Solve
$$4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$$
 given that $u(0, y) = 3e^{-y} - e^{-5y}$ (7M)

b) A rectangular plate with insulated surface is 8 cm wide. If the temperature along (7M) one short edge y = 8 cm. is given by $100 \sin \frac{\pi x}{8}$, 0 < x < 8 while the two long edges x = 0 and x = 8 and other edge are kept 0° c. Find the steady state temperature at any point on the plane

2 of 2

SET - 4 R16 Code No: R161202 I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2018 **MATHEMATICS-II (MM)** (Com to CE, EEE, ME, AE, AME, Bio-Tech, Chem E, Metal E, Min E, PCE, PE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any **FOUR** Questions from **Part-B** PART -A 1. a) Find two iterations of x = sinx using iteration method. (2M) b) Find $\Delta\left(\tan^{-1}\left(\frac{n-1}{n}\right)\right)$ by taking h=1 (2M) Evaluate y (0.1) by Euler's method for $\frac{dy}{dx} = x + y$, y(0) = 1. c) (2M)Write half range sine series for f(x) = 1 in [0,2] d) (2M) Find the value of a_n for $f(x) = \begin{cases} 1 & 0 < x < \frac{1}{2} \\ -1 & \frac{1}{2} < x < 1 \end{cases}$ e) (2M) Write Finite Fourier cosine transform for f(x)f) (2M) Write one dimensional wave equation. g) (2M)PART -B Find the root of the equation $x^3-8x-4 = 0$ using Newton raphson method. a) (7M) 2. Find the root of the equation $4\sin x = e^x$ using False position method. b) (7M) 3. a) Find y(10) for the data (7M) y(3)=2.7, y(4)=6.4, y(5)=12.5, y(6)=21.6, y(7)=34.3, y(8)=51.2, y(9)=72.9b) Evaluate y(2) from the following table. (7M) 3 1 5 6 8 Y 2 2.4 4 1.5 5.6 4. a) Evaluate $\int \sqrt{1+x^4} dx$ by taking h = 0.125 by (7M) (i) Simpson's 1/3rd rule (ii) Simpson's 3/8th rule Evaluate y (0.1) using Taylor's for $\frac{dy}{dx} = x^2 - y^2$, y(0) = 1(7M)www.ManaResults.co.in

1 of 2

Code No: R161202
5. a) Find the Fourier series for
$$f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \\ \frac{-\pi}{2}, & x = 0 \end{cases}$$

Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \ldots = \frac{\pi^2}{8}$
(7M)

b) Find the Half range cosine series of $f(x) = e^x$ in [0,1] (7M)

6. a) Using Fourier integral, Show that
$$\int_{0}^{\infty} \frac{\sin \pi \lambda}{1 - \lambda^2} \sin \lambda x d\lambda = \begin{cases} \frac{1}{2} \pi \sin x & \text{if } 0 < x < \pi \\ 0 & \text{if } x > \pi \end{cases}$$
(7M)

(7M)

b) Find the Fourier cosine transform of x^{n-1}

7. a) Solve
$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$$
, where $u(x,0) = 6e^{-3x}$ by the method of separation of (7M) variables.

b) A bar of 50cm long with insulated sides kept at 0^0 C and that the other end is kept (7M) at 100^0 C until steady state conditions prevail. The two ends are suddenly insulated so that the temperature is zero at each end thereafter. Find the temperature distribution.