I B. Tech II Semester Supplementary Examinations, Nov/Dec - 2017 MATHEMATICS-II (MM)

(Com. to CE,EEE,ME,AE,AME,Bio-Tech,Chem E,Metal E,Min E,PCE,PE)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer ALL the question in Part-A
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

- 1. a) Write the geometrical interpretation of Newton-Raphson method. (2M)
 - b) Prove that $\delta = 2\sin\frac{hD}{2}$. (2M)
 - c) Write Newton Back word interpolation formula. (2M)
 - d) Write the Taylor's series to solve the D.E $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$ (2M)
 - e) Find the value of b_n in the half range sine series of $f(x) = \sin x$ in $[0,\pi]$. (2M)
 - f) Write the Dirichlet conditions for Fourier Transforms. (2M)
 - g) Write two dimensional Laplace equation. (2M)

PART-B

- 2. a) Find the Real root of $x^4 x 9 = 0$ using False position method. (7M)
 - b) Find the Real root of $x = 2\sin x$ using Iteration method. (7M)
- 3. a) Find the Missing term in the following data. (7M)

X	1	2	3	4	5
у	7		13	21	37

b) Find f(32) using Gauss Backward interpolation formula from the following table. (7M)

X	25	30	35	40
у	0.2707	0.3027	0.3386	0.3794

- 4. a) Evaluate $\int_{0}^{1} \sqrt{1+x^4} dx$ by taking h = 0.125 by (i) Simpson's 1/3 rd rule (ii) Simpson's 3/8th rule. (7M)
 - b) Evaluate y (0.1) using RK method of fourth order for $\frac{dy}{dx} = y \frac{2x}{y}$, y(0) = 1 (7M)

WWW.MANARESULTS.CO.IN

- 5. a) Expand $f(x) = \begin{cases} x, -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \pi x, \frac{\pi}{2} < x < \frac{3\pi}{2} \end{cases}$ as half range cosine series. b) Expand $f(x) = \begin{cases} 4 x, 3 < x < 4 \\ x 4, 4 < x < 5 \end{cases}$ Fourier series. (7M)
 - (7M)
- 6. a) Express the $f(x) = \begin{cases} 1 & \text{if } 0 < x < \pi \\ 0 & \text{if } x > \pi \end{cases}$ as a Fourier sine integral. (7M)Hence Evaluate $\int_{0}^{\infty} \frac{(1-\cos\lambda\pi)\sin\lambda x}{\lambda} d\lambda$
 - b) Find the Fourier transform of f(x) defend by $f(x) = \begin{cases} 1 & \text{if } |x| < a \\ 0 & \text{if } |x| > a \end{cases}$ (7M)

And hence evaluate $\int_{0}^{\infty} \frac{\sin p}{p} dp \left[\int_{0}^{\infty} \frac{\sin x}{x} dx \right] \& \int_{-\infty}^{\infty} \frac{\sin ap \cos px}{p} dp$

- 7. a) Solve the PDE $\frac{\partial^2 u}{\partial v^2} = 16 \frac{\partial u}{\partial v}$ using method of variation of parameters. (7M)
 - b) A rod of length 100 cm length has its ends A and B kept at 0^{0} C and 100^{0} C until (7M) steady state conditions prevail. The temperatures at the ends are changed to 20^{0} C and 60° C respectively. Find the temperature in the rod.

2 of 2