

I B. Tech II Semester Supplementary Examinations, December - 2020 **MATHEMATICS-II (MM)**

(Com. to CE, EEE, ME, AE, AME, Bio-Tech, Chem E, Metal E, Min E, PCE, PE) Time: 3 hours Max. Marks: 70

> Note: 1. Question paper consists of two parts (Part-A and Part-B) 2. Answering ALL the questions in Part-A is Compulsory 3. Answer any FOUR Questions from Part-B

PART –A

1.	a)	Define linear convergence and quadratic convergence.		
	b)	Find $\Delta(x^2 + sinx)$.	(2M)	
	c)	Write formula to find interpolation polynomial for unequal intervals.	(2M)	
	d)	Find the value of a_n in the half range cosine series of $f(x) = x$ in [0,2].	(2M)	
	e)	Using Euler's method find y(1.0) for the D.E $\frac{dy}{dx} = 1 + xy, y(0) = 1, h = 0.5$	(2M)	
	f)	Write Fourier integral formula.	(2M)	
	g)	Write one dimensional wave equation.	(2M)	

PART -B

2. a)	Find the Real root of $x^4 - x - 10 = 0$ using bisection method.	(7M)
-------	--	------

- Find the iterative formula for $\sqrt[k]{N}$, hence Evaluate $\sqrt[3]{11}$ using Newton (7M) b) Raphson method.
- a) Find the Missing terms in the following data. (7M) 3.

Х	45	50	55	60	65
у	3		2		-2.4

b) Find f(31) using Gauss For ward interpolation formula from the following table. (7M)

Х	25	30	35	40
у	0.2707	0.3027	0.3386	0.3794

4. a) Evaluate $\int_{0}^{\pi} \frac{\sin^2 x}{5 + 4\cos x} dx$ by (i) Simpson's 1/3 rd rule (ii) Simpson's 3/8th rule. (7M)

b) Evaluate y (0.1) using Picard's method for $\frac{dy}{dx} = \frac{x^2}{1+y^2}$, y(0) = 0(7M)

5. a) Expand the function $f(x) = x + x^2$ as a Fourier series in $[-\pi,\pi]$ (7M) Hence deduce that

(i)
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$$

(ii) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$

b) Expand
$$f(x) = \begin{cases} 0, -\pi < x < 0 \\ \sin x, 0 < x < \pi \end{cases}$$
 as half range sine series. (7M)

6. a) Express the
$$f(x)$$
 defend by $f(x) = \begin{cases} 1 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$ as a Fourier integral (7M)

Hence Evaluate
$$\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$$

b) Find the Fourier transform of
$$f(x)$$
 defend by $f(x) = \begin{cases} x & \text{if } 0 < x < 1\\ 1 - x & \text{if } 1 < x < 2\\ 0 & \text{if } x > 2 \end{cases}$ (7M)

7. a) Solve the PDE
$$x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} = 0$$
 using method of variation of parameters. (7M)

b) A tightly stretched string with fixed end points at x = 0 and x = 1 is initially in a (7M) position given by

$$f(x) = \begin{cases} x & 0 < x < \frac{1}{2} \\ 1 - x & \frac{1}{2} < x < 1 \end{cases}$$

If it is released from this position with velocity zero find the displacement u(x, t) at any point of x of the string at any time is t>0.

2 of 2

["]"]["]["][] www.manaresults.co.in