



## I B. Tech. II Semester Supplementary Examinations, January/February - 2023 MATHEMATICS-III

(Common to AE,AME,CE,CSE,IT,EIE,EEE,ME,ECE, Metal E, Min E, E Com E, Agri E, Chem E, PCE, PE)

| Т                         | ime:                                                                                           | 3 hours Max. Ma                                                                                                                                                                                                                                                                                                                                    | rks: 70                                              |
|---------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                           |                                                                                                | Note: 1. Question Paper consists of two parts ( <b>Part-A</b> and <b>Part-B</b> )<br>2. Answer <b>ALL</b> the question in <b>Part-A</b><br>3. Answer any <b>FOUR</b> Questions from <b>Part-B</b>                                                                                                                                                  |                                                      |
| <u>PART –A (14 Marks)</u> |                                                                                                |                                                                                                                                                                                                                                                                                                                                                    |                                                      |
| 1.                        | <ul> <li>a)</li> <li>b)</li> <li>c)</li> <li>d)</li> <li>e)</li> <li>f)</li> <li>g)</li> </ul> | Define Non- Homogenous system of linear equations.<br>Define Rank of the quadratic form.<br>Find the Eigen values of A <sup>-1</sup> if the Eigen values of A are 3 &4.<br>Write the symmetry of the curve $y = x^3$ .<br>Find $\beta(2,2,)$ .<br>Define the gradient of scalar function.<br>Define surface integral.<br><u>PART -B (56 Marks)</u> | [2M]<br>[2M]<br>[2M]<br>[2M]<br>[2M]<br>[2M]<br>[2M] |
| 2.                        | a)                                                                                             | Solve the system of equations                                                                                                                                                                                                                                                                                                                      | [7M]                                                 |
|                           | b)                                                                                             | 4x + 2y + z + 3w = 0,6x + 3y + 4z + 7w = 0, 2x + y + w = 0<br>Solve the system of following equations using Gauss-seidal iteration method<br>10x + y + z = 9, 2x + 20 y - 2 z = -44, -2x + 3 y + 10z = 22                                                                                                                                          | [7M]                                                 |
| 3.                        | a)                                                                                             | Reduce the quadratic form $3x^2-2y^2-z^2 + 4xy + 12yz+8xz$ to the canonical form using diagonalization method and find the rank index signature.                                                                                                                                                                                                   | [7M]                                                 |
|                           | b)                                                                                             | Find the Eigen values and Eigenvectors of $\begin{bmatrix} 2 & 0 & 6 \\ 4 & 1 & 5 \\ 0 & 0 & 3 \end{bmatrix}$                                                                                                                                                                                                                                      | [7M]                                                 |
| 4.                        | a)                                                                                             | Trace the curve $r = tan\theta$                                                                                                                                                                                                                                                                                                                    | [7M]                                                 |
|                           | b)                                                                                             | Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^{2}}} (x^{2} + y^{2}) dx dy$                                                                                                                                                                                                                                                                           | [7M]                                                 |
| 5.                        | a)                                                                                             | Show that $\int_{a}^{b} (x-a)^{m-1} (b-x)^{n-1} dx = (b-a)^{m+n-1} \beta(m,n) > 0, n > 0$                                                                                                                                                                                                                                                          | [7M]                                                 |
|                           | b)                                                                                             | Evaluate $\int_{0}^{\infty} x^{6} e^{-2x} dx$                                                                                                                                                                                                                                                                                                      | [7M]                                                 |
| 6.                        | a)                                                                                             | Find $div \overline{f}$ , If $\overline{f} = grad(x^3 + y^3 + z^3 - 3xyz)$                                                                                                                                                                                                                                                                         | [7M]                                                 |
|                           | b)                                                                                             | Show that $\nabla \phi$ is both solenoidal and irrotational if $\nabla^2 \phi = 0$                                                                                                                                                                                                                                                                 | [7M]                                                 |
| 7.                        | a)                                                                                             | Find the work done in moving particle in the field $\overline{F} = 3x^2 \overline{i} + (2xz - y)\overline{j} + z\overline{k}$ along the curve defined by $x^2 = 4y$ , $3x^3 = 8z$ from $x = 0$ to $x = 2$ .                                                                                                                                        | [7M]                                                 |
|                           | b)                                                                                             | Apply Gauss Divergence theorem to compute $\iint_{a} \overline{F} \cdot \overline{n}  ds$ where $\overline{F} = x\overline{i} - y\overline{j} + z\overline{k}$ over                                                                                                                                                                                | [7M]                                                 |
|                           |                                                                                                | the surface of the cylinder $x^2 + y^2 = a^2$ bounded by the planes. $z = 0, z = b$ .                                                                                                                                                                                                                                                              |                                                      |
|                           |                                                                                                |                                                                                                                                                                                                                                                                                                                                                    |                                                      |

## ["]]"["]"] www.manaresults.co.in