

I B. Tech II Semester Supplementary Examinations, December - 2020 MATHEMATICS-III

(Com to AE.AME,CE,CSE,IT,EIE,EEE,ME,ECE,Metal E, Min E, E Com E, Agri E, Chem E, PCE,PE) Time: 3 hours Max. Marks: 70

> Note: 1. Question paper consists of two parts (**Part-A** and **Part-B**) 2. Answering the question in **Part-A** is Compulsory

3. Answer any FOUR Questions from Part-B

<u>PART –A</u>

1.	a)	If $A = \begin{bmatrix} 135\\234\\112 \end{bmatrix}$ then find rank of A.	(2M)
	b)	If 1,2,3 are the Eigen values of matrix A, then Eigen values of Adj A are	(2M)
	c)	What is the Nature of the quadratic form If 1,1,2 are Eigen values of form the quadratic form.	(2M)
	d)	Define curve tracing.	(2M)
	e)	Find $\beta(2,2)$	(2M)
	f)	Find $curl \overline{f}$ for $\overline{f} = xy^2 \overline{i} + 2x^2 yz \overline{j} - 3yz^2 \overline{k}$ at the point (1,-1,1)	(2M)
	g)	State Green's theorem.	(2M)
		<u>PART -B</u>	
2.	a)	Find the Nature, Rank, index, signature of the quadratic form. $2r^2 + v^2 - 3z^2 + 12rv - 4rz - 8vz$ by orthogonal reduction	(7M)
	b)	Verify Cayley -Hamilton theorem for the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ also find A ⁻¹	(7M)
3.	a)	Solve the system of equations $4x+2y+z+w = 0, 6x+3y+4z+7w = 0, 2x+y+w = 0$	(7M)
	b)	Find the Rank of the Matrix A = $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ by reducing into Normal form	(7M)
4.	a)	Trace the curve $r = 3 + 2 \cos \theta$	(7M)
		$x^2 + y^2 + z^2$	(7M)

b) Find by double integral, the volume of ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 (7M)

1 of 2

["]]"]"]"]] www.manaresults.co.in

Code No: R161203
5. a) Show that
$$\int_{a}^{b} (x-a)^{m-1} (b-x)^{n-1} dx = (b-a)^{m+n-1} \beta(m,n)m > 0, n > 0$$
 (7M)

b) Show that
$$\int_{0}^{2} x^{3} \sqrt{1 - 4x^{2}} dx = \frac{1}{120}$$
 (7M)

- 6. a) Show that curl curl $\overline{f} = \nabla \times (\nabla \times \overline{f}) = \nabla (\nabla \cdot \overline{f}) (\nabla \cdot \nabla) \overline{f}$ if $\overline{f}(x, y, z)$ is vector (7M) point function.
 - b) Find the directional derivative of the function $xy^2 + yz^2 + zx^2$ along the tangent to (7M) the curve x = t, $y = t^2$, $z = t^3$ at the point (1,1,1)
- 7. a) If $\varphi = 40x^2y$, then evaluate $\iiint_V \varphi dV$ where V is the volume bounded by the coordinate planes and the plane4x + 2y + z = 4. (7M)
 - b) Use Divergence theorem to evaluate $\iint_{S} (x\vec{i} + y\vec{j} + z^{2}\vec{k}) \cdot \hat{n} \, ds$ where S is the (7M) surface bounded by the cone $x^{2} + y^{2} = z^{2}$ in the plane z = 4.