Code No: **R1631013**

R16

SET - 1

III B. Tech I Semester Supplementary Examinations, August - 2021 STRUCTURAL ANALYSIS – II

(Civil Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer **ALL** the question in **Part-A**
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A (14 Marks)

		•
1. a)	Distinguish between two hinged and three hinged arches.	[2M]
b)	List the assumptions made in the Portal Method.	[3M]
c)	What is a suspension bridge?	[2M]
d)	List the advantages of Moment Distribution Method.	[3M]
e)	What is a rotational factor?	[2M]
f)	What are the unknowns to be determined in flexibility method?	[2M]

PART -B (56 Marks)

- 2. a) Determine the horizontal thrust, bending moment, normal thrust [10M] and radial shear of a two hinged arch.
 - b) Write briefly about temperature effects on arches. [4M]
- 3. Analyze the frame shown in below figure by the Cantilever Method. [14M] Draw the bending Moment Diagram.

- 4. A cable is supported between two pints A and B 100 meters apart [14M] horizontally with a central dip of 8m. It supports a uniformly distributed load of 20 kN/m.
 - i) Compute the length of the cable
 - ii) Maximum and Minimum tension in the cable.
- 5. Analyze the continuous beam shown in the below figure by Moment [14M] Distribution Method.

1 of 2

6. Determine the end moments of the frame shown in the below figure [14M] by Kani's method. Draw bending moment diagram.

7. a) Define flexibility coefficient and static indeterminacy.

[6M]

b) Write the steps involved in stiffness method.

[8M]

2 of 2