

SET - 1

I B. Tech II Semester Supplementary Examinations, November - 2021 APPLIED PHYSICS

(Com. to EEE, ECE, CSE, EIE, IT)

Time: 3 hours

Max. Marks: 75

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT- I

- 1. a) What is a thin film? Derive the conditions for constructive and destructive (8M) interference for the reflected system in a thin film of uniform thickness.
 - b) White light is incident on a transparent film of refractive index 1.33 and (3M) thickness 1.6µm at an angle of 45^{0} . When the reflected light is examined, a dark band corresponding to 500nm is seen. Find the order of the band.

c)	State and explain the superposition theorem.	(4M)
----	--	------

Or

- 2. a) Define the resolving power of a microscope. Deduce an expression for it. (8M)
 - b) A microscope is used to resolve to self-luminous objects separated by a distance (3M) of 4.0×10^{-5} cm. If the wavelength of light is 5461Å. Find the angle subtended at the eye by these objects when viewed at a distance of distinct vision 25cm.
 - c) Draw the intensity distribution curves in the case of diffraction at the single (4M) and double slit.

UNIT- II

- 3. a) Exemplify the experimental verification of matter waves by Davisson and (10M) Germer.
 - b) Electrons are accelerated through 344V and are reflected from a crystal. The first (5M) reflection maximum occurs when the glancing angle is 60° . Determine the spacing of the crystal. Given h=6.62x10⁻³⁴J-s, q=1.6x10⁻¹⁹C, and m_e=9.1x10⁻³¹kg.

Or

- 4. a) Obtain Schrödinger time-dependent wave equation and hence differentiate (10M) between the time-dependent and independent Schrödinger wave equations.
 - b) Explain briefly the basis of a normalized function. (5M)

UNIT- III

5. Derive an expression for the density of states and based on that calculate the (15M) carrier concentration in metals.

Or

- 6. a) Write the Fermi-Dirac distribution function. Explain how the Fermi function (10M) varies with temperature.
 - b) Evaluate the Fermi function for energy KT above the Fermi energy. (5M)

"""" www.manare^{1 of 2} lts.co.in

(SET - 1)

UNIT- IV

- 7. a) What are N-type semiconductors? Derive an expression for carrier concentration (10M) in an N-type semiconductor with an energy band diagram.
 - b) An intrinsic Ge at room temperature with a carrier concentration of (5M) $2.4 \times 10^9 m^{-3}$ is doped with one Sb atom in 10^6 Ge atoms. What would be the concentration of holes if the Ge atom concentration is $4 \times 10^{28} m^{-3}$?

Or

- 8. a) Derive the expression for the Hall coefficient. How is the Hall coefficient related (10M) to the mobility of charge carriers?
 - b) The Hall coefficient (R_H) of a semiconductor is $3.22 \times 10^{-4} m^3 C^{-1}$. Its resistivity (5M) is $8.50 \times 10^{-3} \Omega$ -m. Calculate the mobility and carrier concentration of the carriers.

UNIT- V

- 9. a) Explain the different types of polarization mechanisms in dielectric materials. (8M)
 - b) Explain applications of dielectric materials. (7M)

Or

- 10. a) Explain how the magnetic materials are classified from the atomic point of view. (8M)
 - b) What are the differences between hard and soft magnetic materials? (7M)

2 of 2

["]"["]"["]"] www.manaresults.co.in