I B. Tech II Semester Supplementary Examinations, January/February - 2023 NETWORK ANALYSIS

(Common to ECE, EIE)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions One Question from Each Unit
All Questions Carry Equal Marks

UNIT-I

1. a) Compare the dependent and independent electrical sources with diagrams?
b) Analyze the Kirchhoff's current law in topological form by using an example?

(OR)

2. a) Elaborate the step by step process of mesh analysis of an electrical network?
b) Derive the expression for the instantaneous power of an inductive circuit having the applied voltage $v=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}$?

UNIT-II
3. a) Draw and analyze the transient response of first order RC series circuit with DC input voltage?
b) A 17 micro farad capacitor is initially charged to 88 V D.C. It is then discharged through a resistance of R ohms for 14 seconds when the potential difference across the capacitor is 44 V . Determine the value of resistance R ?
(OR)
4. a) Analyze the transient response of RLC series circuit with DC excitation?
b) A resistance R and 5.8 micro farads capacitor are connected in series across a 124 V DC supply. Find the value of resistor such that the voltage across the capacitor becomes 55 V in 5.6 sec after the circuit is switched on?

UNIT-III

5. a) Describe the concept of phase difference of a capacitive circuit with relevant wave forms?
b) From the following data, find the self and mutual inductances of two windings 1 and 2 of an ideal transformer operating in a linear zone? $\mathrm{N}_{1}=540$ turns, $\mathrm{N}_{2}=770$ turns, $\mathrm{I}_{1}=2.6 \mathrm{~A}, \phi_{1}=12 \mathrm{mwb}, \phi_{2}=8 \mathrm{mwb}$?
(OR)
6. a) Analyze the steady state response of RLC series circuit with relevant equations?
b) Two coupled coils have $\mathrm{K}=0.76, \mathrm{~N}_{1}=520$ turns, $\mathrm{N}_{2}=1100$ turns and the mutual flux being 0.82 wb , find the primary coil flux? If the primary current is 7.4 A , find the primary coil inductance. Also find the secondary inductance?

UNIT-IV

7. a) Draw the characteristics and explain the variation of current and impedance in a series resonating circuit?
b) State and prove the compensation theorem with circuit diagram?
(OR)
8. a) Develop the expression and describe the band width of a series resonating circuit?
b) A coil with resistance of 20 ohms and inductance of 0.6 H is connected in parallel with a 440 micro farads capacitor. Calculate the frequency at which the circuit will act as a non inductive resistance and find its value?

1 of 2
|"||"|"|"||"|| www.manaresults.co.in

Code No: R19ES1209

SET - 1

UNIT-V

9. a) Describe the cascading of two port networks and derive the equivalent $[8 \mathrm{M}]$ parameters?
b) Derive the impedance parameters of a two port network with necessary [7M] equations?

(OR)

10. a) Derive the A, B, C, D parameters of a two port network with necessary [8M] equations?
b) The following short circuit currents and voltages are obtained from an experiment [7M] on a two port network.
i) When output is short circuited: $\mathrm{I}_{1}=6.2 \mathrm{~A}, \mathrm{I}_{2}=-0.4 \mathrm{~mA}, \mathrm{~V}_{1}=28 \mathrm{~V}$.
ii) When input is short circuited: $\mathrm{I}_{1}=-6.2 \mathrm{~A}, \mathrm{I}_{2}=12 \mathrm{~mA}, \mathrm{~V}_{2}=32 \mathrm{~V}$.

Determine the admittance parameters?

2 of 2

