I B. Tech II Semester Supplementary Examinations, March - 2022 NETWORK ANALYSIS

(Com. to ECE, EIE)
Time: 3 hours
Max. Marks: 75

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks
 Unit - I

1. a) Explain the need for Source transformation and also give its uses
b) The following voltage shown in the figure is applied to the capacitor of 2F. Draw its current waveform:

2. a) Explain the following w.r.t Graph Theory:
i) Planar graph
ii) Non- planar Graph
iii) Sub - graph
vii) Tree
iv) Path
viii) co - tree
b) Find the currents I_{x} and I_{y} for the following circuit:

3. For the network shown below, a steady state is reached with the switch closed.

The switch is opened at $t=0$. Obtain expressions for $i_{L}(t)$ and $v_{L}(t)$

4. a) Explain the salient points of the Series RLC circuit when excited by a DC Source
with the corresponding current responses of it.
b) For the following network, the switch is moved from a to b at $\mathrm{t}=0$. Determine
$\mathrm{i}(\mathrm{t})$ and $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ using Laplace transform method.

1 of 3
|"||"|"|"||"|| www.manaresults.co.in

Code No: R19ES1209
SET - 1

Unit - III

5. a) Derive the Effective inductance for a differential coupling connected two coils L_{1} and L_{2} connected in series with the coefficient of mutual inductance ' M '.
b) Find the voltage V_{2} in the circuit shown such that the current in the loop1 is zero.

6. A choke coil is connected in series with fixed resistor as shown in Figure below.

A $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply is applied and a current of 2.5 A flows. If the voltage drops across the coil and fixed resistor are 140 V and 160 V respectively, calculate the value of the fixed resistance, the resistance and inductance of the coil, and power drawn by the coil.

Unit - IV

7. a) Derive the expression for the resonant frequency of the parallel circuit shown in the figure below:

b) A resistor and a capacitor are connected in series with a variable inductor. When the circuit is connected to a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, the maximum current obtained by varying the inductance is 2 A . The voltage across the capacitor is 500 V . Calculate the resistance, inductance and capacitance of the circuit.

Or
8. a) State and explain Tellegen's theorem
b) Find the value of Z_{L} for maximum power transfer in the network shown below and find maximum power.

Unit - V

9. Find Z - parameter for the following network:

Or
10. a) Explain the rules to be satisfied for cascading of two port networks
b) The Z-parameters of a two-port network are $\mathrm{Z}_{11}=2.1 \Omega, \mathrm{Z}_{12}=\mathrm{Z}_{21}=0.6 \Omega, \mathrm{Z}_{22}=$ 1.6Ω. A resistor of 2Ω is connected across port 2 . What voltage must be applied at port 1 to produce a current of 0.5 A in the 2Ω resistor.

3 of 3

