II B. Tech I Semester Supplementary Examinations, Oct/Nov - 2017
 PROBABILITY THEORY AND STOCHASTIC PROCESSES

(Electronics and Communications Engineering)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
 All Questions carry Equal Marks

1. a) Explain about total probability theorem.
b) Explain about Bernoulli Trials.
2. a) Given that a random variable X has the following possible values, state if X is discrete, continuous, or mixed.
i) $\{-20<x<-5\}$
ii) $\{10,12<x \leq 14,15,17\}$
iii) $\{4,3,1,1,-2\}$
b) The PDF of a random variable X is given by
$\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\mathrm{K} \delta(\mathrm{x}-5)+0.05[\mathrm{u}(\mathrm{x})-\mathrm{u}(\mathrm{x}-10)]$.
i) Find K
ii) $\operatorname{Plot} f_{x}(x)$
iii) find $\mathrm{p}(0<\mathrm{X} \leq 5)$
iv) Find $\mathrm{p}(0<\mathrm{X}<5)$
3. a) State and prove Chebychev's inequality
b) Find mean and variance of binomial density function
4. a) Random variables X and Y have respective density functions
$f_{X}(x)=\frac{1}{a}[u(x)-u(x-a)]$
$f_{Y}(y)=\frac{1}{b}[u(y)-u(y-b)]$
Where $b>a$ and $a>0$. Find and sketch the density functions of $W=X+Y$ if X and
Y are statistically independent.
b) Explain properties of joint density and distribution functions.
5. a) For two random variables X and Y
$f_{X, Y}(x, y)=0.15 \delta(x+1) \delta(y)+0.1 \delta(x) \delta(y)+0.1 \delta(x)$
$+\delta(y-2)+0.4 \delta(x-1) \delta(y+2)+$
$0.2 \delta(x-1) \delta(y-1)+0.5 \delta(x-1) \delta(y-3)$.
Find the correlation coefficients of X and Y .
b) Two random variables having joint characteristic function
$\emptyset_{\mathrm{XY}}\left(\omega_{1}, \omega_{2}\right)=\exp \left(-2 \omega^{2}{ }_{1}-8 \omega^{2}{ }_{2}\right)$. Find moment's $\mathrm{m}_{10}, \mathrm{mo}_{1}, \mathrm{~m}_{11}$?
6. a) The two-level semi random binary process is defined by $\mathrm{X}(\mathrm{t})=\mathrm{A}$ or $-\mathrm{A}(\mathrm{n}-1)<\mathrm{t}<\mathrm{nT}$ Where the levels A and -A occurs with equal probability, T is positive constant, and $n=0, \pm 1, \pm 2, \ldots$.
i) Sketch a typical sample function
ii) Classify the process
iii) Is the process deterministic
b) Assume that an ergodic random process $\mathrm{X}(\mathrm{t})$ has an autocorrelation function
$R_{x x}(\tau)=18+\frac{2}{6+\tau^{2}}[1+4 \cos (12 \tau)]$
i) Find $|\bar{X}|$
ii) Does this process have a periodic component?
iii) What is the average power in $\mathrm{X}(\mathrm{t})$?
7. a) Derive the relationship between power spectrum and autocorrelation.
b) Given a random process $X(t)=A \cos \omega_{0} t$, where ω_{0} is a constant and A is
uniformly distributed with mean 5 and variance 2 . Find the average power of $X(t)$.
8. A random noise $X(t)$, having a power spectrum
$S_{X X}(\omega)=\frac{3}{49+\omega^{2}}$
is applied to a differentiator with transform function $\mathrm{H}_{1}(\omega)=\mathrm{j} \omega$. The differentiator's output is applied to a network for which $\mathrm{h}_{2}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \mathrm{t} 2 \exp (-7 \mathrm{t})$ The network's response is a noise denoted by $\mathrm{Y}(\mathrm{t})$.
a) What is the average power in $\mathrm{X}(\mathrm{t})$
b) Find the power spectrum of $\mathrm{Y}(\mathrm{t})$
