

II B. Tech I Semester Supplementary Examinations, Oct/Nov - 2017 PROBABILITY THEORY AND STOCHASTIC PROCESSES

(Electronics and Communications Engineering)

Time: 3 hours Max. Mark				
Answer any FIVE Questions All Questions carry Equal Marks				
1.	a) b)	Explain about total probability theorem. Explain about Bernoulli Trials.	(8M) (7M)	
2.	a)	Given that a random variable X has the following possible values, state if X is discrete, continuous, or mixed. i) $\{-20 < x < -5\}$ ii) $\{10,12 < x \le 14,15,17\}$ iii) $\{4,3,1,1,-2\}$	(8M)	
	b)	The PDF of a random variable X is given by $f_X(x) = K \delta (x-5) + 0.05 [u (x) - u (x-10)].$ i) Find K ii) Plot $f_x(x)$ iii) find p (0 < X ≤ 5) iv) Find p(0 < X < 5)	(7M)	
3.	a) b)	State and prove Chebychev's inequality Find mean and variance of binomial density function	(7M) (8M)	
4.	a) b)	Random variables X and Y have respective density functions $f_X(x) = \frac{1}{a}[u(x) - u(x - a)]$ $f_Y(y) = \frac{1}{b}[u(y) - u(y - b)]$ Where b>a and a>0. Find and sketch the density functions of W= X + Y if X and Y are statistically independent. Explain properties of joint density and distribution functions.	(8M) (7M)	
5.	a) b)	For two random variables X and Y $f_{X,y}(x, y) = 0.15 \delta(x+1)\delta(y) + 0.1\delta(x)\delta(y) + 0.1\delta(x)$ $+\delta(y-2)+0.4\delta(x-1)\delta(y+2) +$ $0.2\delta(x-1)\delta(y-1) + 0.5\delta(x-1)\delta(y-3).$ Find the correlation coefficients of X and Y. Two random variables having joint characteristic function	(7M) (8M)	
	0)	$ \emptyset_{XY}(\omega_1, \omega_2) = \exp(-2\omega_1^2 - 8\omega_2^2) $. Find moment's m ₁₀ , mo ₁ , m ₁₁ ?	(0141)	

1 of 2

www.ManaResults.co.in

|"|""||"|||

Code No: R21043			Γ-1
6.	a)	The two-level semi random binary process is defined by X(t) = A or $-A(n-1) < t < nT$ Where the levels A and $-A$ occurs with equal probability, T is positive constant, and $n=0, \pm 1, \pm 2,$ i) Sketch a typical sample function ii) Classify the process iii) Is the process deterministic	(7M)
	b)	Assume that an ergodic random process X(t) has an autocorrelation function $R_{xx}(\tau) = 18 + \frac{2}{6+\tau^2} [1 + 4\cos(12\tau)]$ i) Find $ \overline{X} $ ii) Does this process have a periodic component? iii) What is the average power in X(t)?	(8M)
7.	a) b)	Derive the relationship between power spectrum and autocorrelation. Given a random process $X(t) = A \cos \omega_0 t$, where ω_0 is a constant and A is uniformly distributed with mean 5 and variance 2. Find the average power of X(t).	(8M) (7M)
8.		A random noise X(t), having a power spectrum $S_{XX}(\omega) = \frac{3}{49 + \omega^2}$	(16M)
		is applied to a differentiator with transform function $H_1(\omega) = j \omega$. The differentiator's output is applied to a network for which $h_2(t) = u(t)t2exp(-7t)$ The network's response is a noise denoted by Y(t). a)What is the average power in X(t) b)Find the power spectrum of Y(t)	

www.ManaResults.co.in