Code No: **R41024**

R10

Set No. 1

IV B.Tech I Semester Supplementary Examinations, November - 2016 POWER SYSTEM OPERATION AND CONTROL

(Electrical and Electronics Engineering)

Time: 3 hours

Answer any FIVE Questions

Max. Marks: 75

[8]

All Questions carry equal marks

1	a)	Explain the following terms with reference to power plants:	
		Heat input – power output curve, Heat rate input, Incremental input,	
		Generation cost and Production cost.	[8]
	b)	A power system consists of two 100MW units whose input cost data are	
		represented by equations below	
		$C1 = 0.04 P1^2 + 22P1 + 800 Rs/hr$	
		$C2 = 0.045 \text{ P2}^2 + 15\text{P2} + 1000 \text{ Rs/hr}$	
		If total received power $PR = 150$ MW. Determine	
		i) The load sharing between units for most economic operation	
		ii) The corresponding costs of operations.	[7]
2	a)	Give various uses of general loss formula and state the assumptions made for	
		calculating Bmn coefficients.	[8]
	b)	The incremental fuel cost for two plants are	
		dC1 / dPG1 = 0.075 PG1 + 18 Rs./MWh	
		dC2 / dPG2 = 0.08PG2 + 16Rs./MWh	
		The loss coefficients are given as	
		B11=0.0015/MW, B12 = -0.0004/MW and B22= 0.0032/MW for λ =25 Rs./MWh.	
		Find the real power generations, total load demand and the transmission power	
		loss.	[7]
3	a)	Describe the objective function to minimize the cost of generation of hydro	
		thermal scheduling.	[7]
	b)	Explain the short term Hydro-thermal scheduling problem with necessary	

expressions.

1 of 2

WWW.MANARESULTS.CO.IN

|"|""||"|||

Code No: **R41024**

R10 thod of solving unit commitmer

Set No. 1

4	a)	Explain the priority list method of solving unit commitment Problem. State merits and limitations of this method.	[8]
	b)	Explain the Forward Dynamic Programming method of solving unit commitment problem with neat flow chart.	[7]
5	a)	A 100 MVA Synchronous generator operates at 50 Hz, runs at 3000 rpm under no load. A load of 25 MW is suddenly applied to the machine. Due to the time lag in the governor system the turbine commences to open after 0.6 sec. Assuming inertia constant H= 5 MW- sec per MVA of generator capacity, calculate the frequency of the system before steam commences to increase to meet the new load	[7]
	b)	Explain the dynamic response of single area load frequency control.	[8]
6	a)	Briefly explain the various frequency control strategies used to regulate the power system frequency.	[7]
	b)	Two control areas have the following characteristics:	
		Area-1: Speed regulation = 0.02 pu Damping coefficient = 0.8 pu	
		Rated $MVA = 1500$	
		Area-2: Speed regulation $= 0.025$ pu	
		Damping co-efficient = 0.9 pu	
		Rated $MVA = 500$	
		following a load change of 120MW occurs in area-1. Also find the tie-line power flow change.	[8]
7		A power system consists of two 100MWunits whose input cost data are represented by equations below $C_{1} = 0.04 r^{2} + 20 P_{1} + 800 P_{2} d$	
		$C1 = 0.045 P_1^2 + 22P1 + 800 Rs/hr$	
		$C2 = 0.045 P_2^2 + 15P2 + 1000 \text{ Rs/hr}$	
		 (a) The load sharing between units for most economic operation (b) The corresponding costs of operations. 	[15]
8	a)	What is load compensation? Discuss objectives of compensation in power system.	[7]
	b)	Explain about shunt and series compensation for transmission systems.	[8]

WWW.MANARESULTS.CO.IN

|"|""||"|||