Code No: **R41081**

Set No. 1

Max. Marks: 75

IV B.Tech I Semester Supplementary Examinations, February/March - 2018

TRANSPORT PHENOMENA

(Common to Chemical Engineering and Petroleum Engineering)

Time : 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1	a) b) c)	Write a note on Eyring theory of viscosity of liquids. Define the terms convective mass flux and molecular mass flux. Define momentum flux and determine the same, when the lower plate velocity is 2ft/s in the positive z-direction. The plate separation is 0.002 ft and the fluid viscosity is 0.7 cp.	[4] [4] [7]
2	a) b)	Derive the expression for velocity and momentum balance distribution for the upward flow in a cylindrical annulus. A power law fluid flows through a circular pipe in a laminar flow under a pressure gradient. Derive the equation for momentum flux and velocity distribution.	[8] [7]
3	a) b)	Compare and contrast forced and free convection heat transfer. Heat flows through an annular wall of inside radius R_0 and outside radius R_1 . The thermal conductivity of the wall varies linearly with the temperature from k_0 at T_0 to k_1 at T_1 . Derive an expression for heat flow through the wall using shell energy balance.	
4	a) b)	Define Thiele modulus and diffusion controlled reaction. Consider a simple model for a catalytic reactor, in which a reaction $2A \rightarrow B$ is being carried out. Assume that each catalyst particle is surrounded by a stagnant gas film through which A has to diffuse to each the catalyst surface. At the catalyst surface assume that the reaction $2A \rightarrow B$ occurs instantaneously, and that the product B then diffuses back out through the gas film to the main turbulent	[3]
		stream containing A and B.	[12]
5	a) b)	stream containing A and B. Explain substantial derivative with the help of an example. Equation of motion is a 'statement of Newton's second law of motion'. Prove the statement from the first principles of writing conservation of momentum balance for a fluid flowing in random direction through a volume element of size $\nabla x \nabla y \nabla z$.	[12] [3] [12]

 $1 \ of \ 2$

WWW.MANARESULTS.CO.IN

R10

Set No. 1

Code No: **R41081**

7 A semi-infinite slab occupying space from y = 0 to $y = \alpha$ is initially at temperature T_o . At time t = 0, the surface at y = 0 is suddenly raised to T_α and maintained at that temperature. Derive the equations for (a) temperature distribution (b) thermal boundary layer (c) heat flux at y = 0. [15]

8	a)	What is time smoothing? Explain and give its significance.	[9]
	b)	Write a note on Prandtl mixing length theory.	[6]

2 of 2

WWW.MANARESULTS.CO.IN