Code No: **R41083**

IV B.Tech I Semester Supplementary Examinations, February/March - 2018 PROCESS MODELING AND SIMULATION

(Chemical Engineering)

Time: 3 hours

Max. Marks: 75

[8]

Answer any FIVE Questions All Questions carry equal marks *****

- 1 a) Define model? Explain how mathematical models can be useful in all phases of Chemical Engineering. [8]
 - b) Draw a flowchart showing the major steps in process modeling. Show the interrelations between the flowchart stages. [7]
- 2 a) Determine the mathematical model for isothermal CSTR with constant hold up.
 - b) Derive a Mathematical Model for the Batch reactor in which the First order consecutive reactions to give the desired product B with the rate constants k₁ and k₂.
 [7]
- 3 a) Develop a model for Flash distillation column as show in figure 3 (a). Write modeling assumptions.

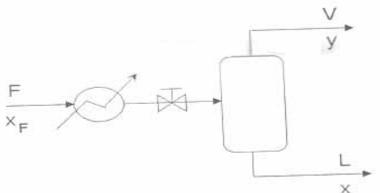


Figure 3 (a) [8]

- b) Explain the steady state model and Liquid phase dynamics model for LPG vaporizer with a neat diagram. [7]
- 4 a) Find a root of $x \log_{10} x 1.2 = 0$ using Newton Raphson method correct to three decimal places.
 - b) Find the real root of the equation $x^3 2x 5 = 0$ by using false position method. [7]
- 5 a) Using modified Euler's method, find an approximate value of y corresponding to x = 0.2, given that $dy/dx = x^2 + y^3$ and y = 1 when x = 0. Use the step size h = 0.1.
 - b) State different predictor-corrector method. For the initial value problem $dy/dx = y+x^2$, y (0) =1, use Milne's prediction-corrector method to find y (0.8) by taking h = 0.2 from following data.

Х	0	0.2	0.4	0.6	
у	1	1.2242	1.5155	1.9063	[7]

WWW.MANARESULTS.CO.IN

[/]

[8]

[8]

Code No: **R41083**

R10

Set No. 1

- 6 a) Develop a mathematical model for a gravity flow tank into which an incompressible liquid is pumped at a variable flow rate of F_o (m³/s). This inflow rate can vary with time because of changes in operations in the upstream The height of the liquid in the vertical cylindrical is h (m). The flow rate out of the tank is F (m³/s).Discuss the Explicit first order Euler method for solving the modeled equations.
 - b) Develop a mathematical model for a counter current double pipe heat exchanger process for predicting the transient response. Discuss an Euler algorithm for solving the model equations. Give a suitable flow chart for the simulation.

[7]

[8]

- 7 a) Explain the applications of PDE'S for solving heat conduction in hot rod.
 (8) A concentric tube heat exchanger uses water, which is available at 15°C, to cool ethylene glycol from 100 to 60°C. The water and glycol flow rates are each 0.5 kg/s. Determine the maximum possible heat transfer rate and effectiveness of the exchanger. Determine which is preferred, a parallel –flow or counter flow mode of operation.

8	a)	List out the software's available for process simulation. Explain any one in	
		detail.	[8]
	1 \		г <i>7</i> л

b) Explain SIMPLER algorithm used for solving Navier Stoke's Equation. [7]

2 of 2