SET - 1

II B. Tech II Semester Supplementary Examinations, August/September - 2021
 FORMAL LANGUAGES AND AUTOMATA THEORY
 (Computer Science and Engineering)

Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A

1. a) What is Finite State Machine? What are its elements?
b) Describe the relationship between Grammars and Languages.
c) Find out the $€^{*}$ and ϕ^{*}.
d) Mention the applications of regular expressions.
e) Define Mealy and Moore Machines.
f) Every decidable language is Turing-Acceptable? Justify.

PART -B

2. a) Discuss about the classification of automata.
b) Explain the applications of Finite State Machine in real world.
3. a) Define alphabet and language. Write the Operations that can be performed on a language with examples.
b) Prove that if L is regular grammar the L is a regular set.
4. a) Design DFA for set of all strings whose number of a's are divisible by 5 and number of b's are divisible by 7 over $\sum=\{a, b\}$.
b) Convert the following NFA to its equivalent DFA.

δ	0	1
$\rightarrow \mathrm{q}_{0}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	q_{1}
${ }^{*} \mathrm{q}_{1}$	q_{2}	q_{2}
q_{2}	ϕ	q_{2}

5. a) Prove that regular languages are closed under homomorphism.
b) Construct a NFA equivalent to the regular expression $(10+11)^{*} 00$.
6. a) Design a context free grammar for the language $L=\left\{W=W^{R} \mid W\right.$ is in $\left.\{a, b\}^{*}\right\}$.
b) What is an ambiguous grammar? Show that the following grammar is ambiguous. $\mathrm{S} \rightarrow \mathrm{AB} \mid \mathrm{aaB}$
$\mathrm{A} \rightarrow \mathrm{Aala}$
7. a) Construct Turing Machine for multiplication of two unary numbers.
b) Explain how P problems are different from NP problems.
