

II B. Tech II Semester Supplementary Examinations, November - 2020 FORMAL LANGUAGES AND AUTOMATA THEORY (Computer Science and Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1	. (Question Pa	per consis	sts c	of two	parts	(Paı	rt-A	and]	Part-	·B)
2	. <i>F</i>	Answer AL	L the ques	stior	n in Pa	rt-A					
				~			-				

3. Answer any **THREE** Questions from **Part-B**

PART -A

1.	a)	Give the mathematical representation of Finite State Machine.											
	b)	Differentiate between CFG and CFL.											
	c)	Define δ in NFA with ϵ (Epsilon) moves.											
	d)	Write the properties of regular sets.											
	e)	Obtain CFG for the language $L = \{ 0^{n+2} 1^n : n \ge 1 \}.$											
	f)	What is undecidable problem? How can it be solved?											
		PART –B											
2.	a)	Discuss the various models of Computation.	[8M]										
	b)	Design a Finite State Machine (FSM) that will take an arbitrary-sized integer as											
		input, one bit at a time (starting from most significant bit), and return the remainder after this integer is divided by 3	[8M]										
		Temander arter tills integer is divided by 5.											
3.	a)	Prove that every context sensitive language is recursive.											
	b)	What is recursive enumerable language? Explain its properties.	[8M]										
4.	a)	Construct a DFA to accept strings over {a,b} such that every block of length five	[0]]										
	1.)	contains at least two a's. Use transition function to trace a string W=aabba.	[owi]										
	D)	Construct the equivalent DFA for the following ϵ - NFA by computing the ϵ - closure of each state.											
		E a b c	[8M]										
		$\rightarrow p \phi \qquad \{p\} \qquad \{q\} \qquad \{r\}$											
		$\begin{array}{c c} q & \{p\} & \{q\} & \{r\} & \phi \\ \hline \end{array}$											
5	a)	Construct the minimum state equivalent DEA for the following DEA											
5.	<i>a)</i>	$\frac{\delta}{\delta} = 0 \qquad 1$											
		$\rightarrow A$ B F											
		B G C											
		*C A C	[8M]										
		D C G	[01,1]										
		E H F F C G											
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
		$\frac{3}{H}$ $\frac{3}{G}$ $\frac{2}{C}$											

b) Let $\sum = \{a,b\}$. Show that the language $L = \{W \in \sum * | n_a(W) < n_b(W)\}$ is not [8M] regular.

["]]"["]["]] www.manaresults.co.in

```
R13
```

- 6. a) Give the Mealy and Moore machine for input from (0+1+2)* and print the residue modulo 5 of the input treated as a ternary.
 b) What is GNF? Convert the following grammar to GNF:
 S → AB1 | 0
 A → 00A | B
 - $A \to 00A | B$ $B \to 1A1$
- 7. a) Design a Turing machine to accept the set of all palindromes over $\{0,1\}^*$. [8M]
 - b) Prove that every language accepted by multi tape Turing machine is recursively [8M] enumerable.

2 of 2

["]]"]"]"]] www.manaresults.co.in