Code No: RT31026

1

2

3

4

5

6

III B. Tech I Semester Regular/Supplementary Examinations, October/November -2017 LINEAR & DIGITAL IC APPLICATIONS

(Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in **Part-A** is compulsory 3. Answer any THREE Questions from Part-B PART -A What is active load? Where it is used and Why? [4M] a) A square wave of peak to peak amplitude of 500 mv has to be amplified to a peakb) [4M] to-peak amplitude of 3 V, with a rise time of 4 µSec. or less. Can a 741 be used? Draw the logarithmic amplifier circuit [3M] c) Draw the typical connection diagram of VCO 566 and what are its features d) [4M] Draw the active notch filter and what are its features [4M] e) f) What is the need for A/D and D/A conversion? [3M] PART-B Present the a.c analysis of differential amplifier using h-parameters. Find A_d, A_c, R_i [8M] a) and R_0 for dual input balanced output configuration. For a dual input unbalanced output differential amplifier, various circuit [8M] b) are $|V_{cc}| = |V_{EE}| = 10V, R_{C} = 4.7K\Omega, R_{E} = 6.8K\Omega, R_{S1} = R_{S2} = 50\Omega,$ parameters $\beta_{dc}=\beta_{ac}=49$ and $V_{BE}=0.7V$. Find Q-Point, Voltage gain, Input Resistance, Output Resistance. Explain the process of measuring open loop voltage gain and input bias current in [8M] a) op-amp Draw and explain the working of Bias current compensations circuit. [8M] b) Draw and explain the non-inverting summing amplifier. a) [8M] Design the op-amp circuit which can give the output as $V_0=2V_1-3V_2+4V_3-5V_4$. b) [8M] a) Derive expression for the duty cycle of Astable multivibrator using IC 555 with a [8M] neat circuit and waveforms. b) Design a square wave generator of frequency 100 Hz and duty cycle of 75%. [8M] a) Design a second order Butterworth 50 Hz notch filter for removing line noise from [8M] an ECG signal. Design a wide band reject filter having $f_H=200$ Hz and $f_L=2$ KHz, assume suitable [8M] b) data.

- 7 a) Explain the operation of multiplying DAC and mention its applications. [8M]
 - b) The logic levels used in an 8-bit R-2R ladder type DAC ARE LOGIC '1' = +5 [8M] volts and logic '0' = 0 volts. Find the output voltage for an input of 10110111.

WWW.MANARESULTS.CO.IN

|"|""||"||

Code No: RT31026

III B. Tech I Semester Regular/Supplementary Examinations, October/November -2017 LINEAR & DIGITAL IC APPLICATIONS

(Electrical and Electronics Engineering)

Ti	me:	3 hours Max. Ma	arks: 70
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is compulsory 3. Answer any THREE Questions from Part-B 	
1	a)	The common mode input to a differential amplifier with a differential gain of 120 is 2 Sin $100\pi t$ V. find the common mode output if CMRR is 60 dB.	[4M]
	b)	What are the characteristics of IC Voltage regulators?	[4M]
	c)	Draw the instrumentation amplifier.	[3M]
	d)	Draw the Schmitt trigger circuit using IC 555.	[4M]
	e)	Draw the frequency response characteristics of high pass filter.	[3M]
	f)	State the advantages and applications of sample and hold circuits.	[4M]
		PART -B	
2	a) b)	 Determine the voltage gain of FET based differential amplifier with active load. Design the dual input and balanced output differential amplifier using diode the constant current bias to meet the following specifications and draw the designed circuit. i) Supply voltage = ±10V ii) Emitter current I_E in each differential amplifier transistor is 1.5 mA and V_{BE}=0.7 V iii) Values asin ≤ (0) 	[8M] [8M]
		111) Voltage gain ≤ 60	
3	a) b)	Explain the process of measuring input offset voltage and PSRR in op-amp. Draw and explain the working of Output offset voltage balancing circuit.	[8M] [8M]
4	a)	Draw the op-amp based subtractor circuit and show that the output is proportional to the difference of the two input voltages.	[8M]
	b)	Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz to 1 kHz. If a sine wave of 1 V peak at 1000 Hz is applied to this differentiator, draw the output waveform.	[8M]
5	a)	Derive expression for the pulse width of Mono stable multi vibrator using IC 555 with a neat circuit and waveforms	[8M]
	b)	Design an Astable multi vibrator which will flash the electric bulb such that its ON time will be 3 seconds and off time will be 1 second.	[8M]
6	a) b)	Design a notch filter for $f_N=8$ kHz and Q = 10, Choose C = 500 pF Design a first order wide band reject filter with a higher cutoff frequency of 100 Hz and a lower cutoff frequency of 1 KHz. Calculate the Q-factor of the filter.	[8M] [8M]
7	a)	Design a 4-bit weighted resistor DAC whose full scale output voltage is -10 volts. Assume $R_f = 10$ K, logic '1' level as +5 volts and logic '0' level as 0 volts. What is the output voltage when the input is 1011	[8M]
	b)	is the output voltage when the input is 1011. Discuss the R-2R ladder used in digital to analog conversion using suitable mathematical expressions.	[8M]

WWW.MANARESULTS.CO.IN

|"|""||"|||

III B. Tech I Semester Regular/Supplementary Examinations, October/November -2017 **LINEAR & DIGITAL IC APPLICATIONS**

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in **Part-A** is compulsory 3. Answer any THREE Questions from Part-B

PART -A

1	a)	Draw the emitter coupled differential amplifier	[4M]
	b)	Draw the circuit of a voltage regulator and explain	[4M]
	c)	Give the applications of instrumentation amplifier	[4M]
	d)	Draw the Astable multivibrator using IC 555	[3M]
	e)	Draw the frequency response characteristics of band elimination filter	[3M]
	f)	Find the step size and analog output when input is 1000 and 1111. Assume $V_{ref} = 5 V$	[4M]
		PART -B	
2	a)	Present the a.c analysis of differential amplifier using r-parameters. Find A_d, A_c, R_i and R_o for dual input balanced output configuration.	[8M]
	b)	Draw a circuit in which the output current is forced to equal the input current.	[8M]
3	a)	Discuss the measurement of CMRR and output offset voltage in op-amp	[8M]
	b)	Draw the schematic diagram and explain about Dual power supply using 78XX and 79XX integrated circuits.	[8M]
4	a)	Draw the three op-amp instrumentation amplifier and derive expression for its overall gain.	[8M]
	b)	Draw the active integrator circuit and discuss about its frequency response.	[8M]
5	a)	Derive expression for the voltage to frequency conversion factor of a VCO.	[8M]
	b)	With the help of a block diagram determine the capture range of PLL.	[8M]
6	a)	Design a notch filter for $f_N = 8$ KHz and $Q = 10$, choose $C = 500$ pF.	[8M]
	b)	Design a second order Butterworth 50 Hz notch filter for removing line noise from an ECG Signal.	[8M]
7	a)	Calculate the conversion time for a full scale input in case of a 12-bit counter type ADC driven by 4 MHz clock	[6M]
	b)	Draw the block diagram and illustrate the conversion process of the successive approximation A/D Converter	[10 M]

WWW.MANARESULTS.CO.IN

1.1.1.1.1.1.1.1.111

III B. Tech I Semester Regular/Supplementary Examinations, October/November -2017 LINEAR & DIGITAL IC APPLICATIONS

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is compulsory 3. Answer any THREE Questions from Part-B

PART -A

1	a)	Draw the current mirror circuit? What are its advantages?	[4M]
	b)	Derive expression for slew rate of an op-amp.	[4M]
	c)	Draw the voltage to current converter circuit using op-amp.	[3M]
	d)	Draw the Monostable multivibrator using IC 555.	[4M]
	e)	What are the advantages of active filters.	[3M]
	f)	State the advantages of tracking converter over the counter type converter.	[4M]
		PART -B	
2	a)	How the active loads are used to improve CMRR of a differential amplifier? Explain with a neat circuit	[8M]
	b)	Draw the circuit and explain about the cascaded differential amplifier.	[8M]
3	a)	Discuss the measurement of output resistance and CMRR in op-amp.	[8M]
	b)	Draw and explain the working of Output offset voltage balancing circuit.	[8M]
1	a)	Draw the active differentiator and give the complete frequency response of it	[8M]
-	a) b)	Draw the active differentiator and give the complete negative response of R. Design a differentiator that will differentiate an input signal with $f_{\rm c} = 100$ Hz.	
	D)	Design a differentiator that will differentiate an input signal with $J_{max}=100$ Hz.	[8][8]
5	a)	Draw the transfer characteristics of PLL and present its closed loop analysis.	[8M]
	b)	With the help of a block diagram determine the lock range of PLL.	[8M]
	- /		L- J
6	a)	Design and obtain the frequency response of a band pass filter with $f_L = 500$	[8M]
		Hz and $f_{H=2}$ kHz with pass band gain 1.	
	b)	Design a wideband reject filter having $f_H = 500$ Hz and $f_L = 3$ KHz with a pass band gain of 2.	[8M]
7	a)	Discuss in detail about the dual slope ADC	[8M]
	b)	Draw the inverted R/2R ladder D/A Converter in current steering mode and derive for the output voltage.	[8M]

WWW.MANARESULTS.CO.IN

|"|"||"||