III B. Tech I Semester Supplementary Examinations, March - 2021 ANTENNAS AND WAVE PROPAGATION

(Electronics and Communication Engineering)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A

(22 Marks)

1. a) What is the effective area of a half-Wave dipole operating at 500 MHz ?
b) Discuss about $1 / \mathrm{r}, 1 / \mathrm{r}^{2}$ and $1 / \mathrm{r}^{3}$ terms and suggest the suitable term at far-field [4M] calculations.
c) How much ' αe ' is required for BSA, EFA (forward \& backward directions)?
d) List out the differences between conventional dipole antenna and Helical Antenna.
e) List out the measurement ranges? Explain any one of the range.
f) Explain Ionospheric Layers.

PART - B

(48 Marks)
2. a) Write notes on polarization, Antenna Aperture ($\mathrm{A}_{\text {eff }}$) and directivity (D)? What is the $[8 \mathrm{M}]$ relation between $A_{\text {eff }}$ and D ?
b) Define and estimate effective weight of an antenna if current distributions are triangle and sinusoidal.
3. a) Derive the radiated fields by small loop antenna.
b) How can estimate E and M fields at far-field distance radiated by an antenna? Explain.
4. a) Derive the array factor and draw the radiation pattern of 2-Element linear Array with ${ }^{\prime} d^{\prime}=\lambda / 2$ and direction is broad side.
b) Explain the design and working of 5-Element linear array at $f=1 \mathrm{GHz}$.
5. a) Compare the performance of traveling wave radiator with respect to resonant radiator.
b) Define axial Ratio. Estimate the type of Polarization if $\mathrm{AR}=0,1$ and 100.
6. a) Explain the 90° corner reflector.
b) Find the power gain and directivity of a horn whose dimensions are $10 \mathrm{~cm} \times 5 \mathrm{~cm}$ operating at a frequency of 6 GHz .
7. a) Explain the Tropospheric wave Propagation.
b) Prove that: $\mathrm{f}_{\text {muf }}=\operatorname{Sec}(\theta \mathrm{i})$.

