IV B.Tech I Semester Supplementary Examinations, February - 2019 WATER RESOURCES ENGINEERING - II

(Civil Engineering)

Time: 3 hours Max. Marks: 70

> Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B ****

DADE 4/22 1/ 1 \

		PART-A(22 Marks)	
1.	a)	What is sprinkler irrigation? What are the conditions favouring sprinkler	
		irrigation?	[4]
	b)	Distinguish between Kennedy's theory and Lacey's theory.	[4]
	c)	What are the objectives of river training?	[4]
	d)	What is a weir and barrage? Distinguish between them.	[3]
	e)	Differentiate between: (i) elementary profile and practical profile of gravity dam and (ii) low and high gravity dams	[4]
	f)	Draw a neat diagram of zoned embankment. Describe the functions of each	
		component.	[3]
		PART-B(3x16 = 48 Marks)	
2.	a)	What is water logging? Explain ill effects and control measures of water	
۷٠	α)	logging.	[8]
	b)	A water course has a culturable commanded area of 1500 hectares. The	[o]
	٠,	intensity of irrigation of crop A is 50% and for B is 40%. Crop A is a Kharif	
		crop and crop B is a Rabi crop. Crop A has a kor period of 21 days and crop B	
		has kor period of 14 days. Calculate the discharge of the water course if the kor	
		depth for crop A is 15 cm and for B it is 20 cm.	[8]
•			
3.	a)	Design an irrigation channel to carry 45 cumecs of discharge. Take silt factor as	101
	b)	1.1 and side slope as ½: 1. Also determine the longitudinal slope.	[8]
	b)	Design a lined canal to carry a discharge of 180 cu.m/s on a slope of 1 in 2200. The maximum permissible velocity is 1.8 m/s and rugosity coefficient is 0.012	
		in Manning's formula and the side slope is 1.25 H: 1 V.	[8]
		in Maining 3 formata and the side slope is 1.23 II. 1 V.	[0]
4.	a)	Design an aqueduct for the following data.	
		Canal: (i) full supply discharge = 35 cumecs (ii) Full supply level = 200.00 m	
		(iii) Canal bed level = 198.5 m (iv) Depth of water = 1.5 m, (v) Bed width = 22	
		m (vi) Side slope = 1.5 : 1, Drainage: (i) High flood discharge = 350 cumecs,	
		(ii) High flood level = 196.5 m(iii) Bed level = 193.5 m (iv) General ground	
		level = 199.0 m, Take Manning's rugosity coefficient as 0.015 and Lacey's silt	F103
	1 \	factor as 1.0. Assume any other data needed suitably.	[10]
	b)	What are the functions of cross-regulator and head-regulator?	[6]

R13

Code No: RT41014

Set No. 1

5.	a)	Explain Khosla's method of independent variables. How do you apply corrections for interference of piles and inclination of floor?	[8]
	b)	Discuss the causes of failures of weirs on permeable foundations and suggest suitable control measures for each type of failure.	[8]
6.	a)	Classify various types of dams. Discuss the factors that affect the selection of type of dam.	[8]
	b)	Discuss the modes of failures and criteria for structural stability of gravity dams.	[8]
7.	a)	Explain the method of stability analysis of downstream slope during steady seepage.	[8]
	b)	Discuss briefly various types of energy dissipaters that are used for energy dissipation below overflow spillway, under different relative positions of TWC and JHC.	[8]