R13

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 HVAC AND DC TRANSMISSION

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

[4]

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

- What are the properties of bundled conductors? 1. a)
 - What are the causes for RI and RIV generation in transmission lines? [4] b) Give the comparison between HVAC and HVDC transmission. [4] c)
 - What the effect of source induction on the performance of HVDC transmission. [3] d)
 - What is the role of synchronous condenser in HVDC transmission? e) [3] [4]
 - What are the adverse effects of harmonics? f)

<u>PART-B</u> (3x16 = 48 Marks)

Explain about the power handling capacity and power loss in EHV transmission line. 2. a) [8] A 735 kV line has N = 4, r = 0.0176 m, B = 0.4572 m for the bundled conductor b) of each phase. The line height and phase spacing in horizontal configuration are H = 15, S = 15 m. Calculate the maximum surface voltage gradients on the centre phase and outer phases. [8] Using charge-voltage diagram, show that energy loss in EHV conductor in the 3. a) presence of corona is $P_C = \frac{1}{2} KC(V_m^2 - V_0^2)$. [10] b) Explain briefly about measurement of excitation function. [6] Draw the schematic diagram of typical HVDC converter station and explain the 4. a) functions of equipment in it. [8] Briefly explain the different types of HVDC links and their relative merits. b) [8] Draw the complete converter control characteristics and explain the process of 5. a) power reversal. [8] A Graetz bridge operates with a delay angle of 15^{0} . The leakage reactance of b) the transformer is 10 Ω . The line to line voltage is 90 kV. Compute the direct voltage and overlap angle if $I_d = 2500$ A. [8] Why Reactive power sources need to be employed in a converter station? 6. a) [8] b) Discuss about the alternate control strategies which need to be adopted for reactive power control in HVDC links. [8] 7. a) Explain with a neat diagram about the functionalities of single tuned filter. [8] How do you estimate the harmonic order based upon pulse number of HVDC b) converter station? Give a detailed harmonic analysis of a 12 pulse converter for characteristic harmonics. [8]

1 of 1 www.ManaResults.co.in

1"1"11"11"1111

www.ManaResults.co.in

Time: 3 hours

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

HVAC AND DC TRANSMISSION (Electrical and Electronics Engineering)

PART-A (22 Marks)

1.	a)	What are the problems with EHV AC transmission?	[4]
	b)	Explain briefly about RI excitation function.	[3]
	c)	Draw the diagrams of various types of DC links	[4]
	d)	Explain briefly about starting and stopping of HVDC link.	[4]
	e)	What are the various sources of reactive power in HVDC converters?	[3]
	f)	Write the differences between characteristics harmonics and non-characteristics harmonics.	[4]
		$\underline{\mathbf{PART}}_{\mathbf{B}} (3x16 = 48 Marks)$	
2.	a)	Show that equivalent radius of a bundled conductor is $r_{eq} = R \left[\frac{N \cdot r}{R} \right]^{\frac{1}{N}}$.	[8]
	b)	A power of 2000 MW is to be transmitted from a super thermal power station in central India over 800 km to Delhi. Use 400 kV and 750 kV alternatives. Suggest the number of circuits required with 50 % series capacitor compensation, and calculate the total power loss and loss per km. (Assume resistance of conductor for 400 kV and 750 kV as 0.031 and 0.0136 ohm/km & reactance of conductor for 400 kV and 750 kV as 0.327 and 0.272 ohm/km).	[8]
3.	a)	Explain the generation, characteristics, limits and measurement of audio noise	[0]
5.	,	due to corona in EHV lines.	[9]
	b)	For $r = 1$ cm, $H = 5$ m, $f = 50$ Hz, calculate corona loss P_C according to Peek's formula when $E = 1.1 E_O$, and $\delta = 1$. Also calculate corona current.	[7]
4.	a)	Explain planning and modern trends used in HVDC transmission system to improve its reliability and performance.	[8]
	b)	Compare HVDC and HVAC systems with respect to (i) Cost (ii) Voltage control (iii) stability limits (iv) reliability.	[8]
5.	a)	Draw the configuration of 12-pulse converter and explain with the help of its characteristics.	[8]
	b)	Briefly explain the current and extinction angle control schemes in HVDC	
	,	systems.	[8]

www.ManaResults.co.in

|"|"||"||

Code No: **RT41022**

R13 IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017

Set No. 2

Max. Marks: 70

R13

6.	a)	Discuss how reactive power requirement is met using synchronous condensers and AC filters.	[8]
	b)	Discuss about conventional control strategies for reactive power control in HVDC link.	[8]
7.	a) b)	Discuss about various types of AC filters which will be employed for a HVDC link. A double tuned AC filter at certain HVDC converter station has the following	[8]

parameters: $C_1=0.77 \ \mu\text{F}$, $C_2=31.69 \ \mu\text{F}$, $L_1=94.43 \text{ mH}$, $L_2=2.29 \text{ mH}$, f=50Hz, $V_1=400 \text{ kV}$. Compute ω_1 , ω_2 and Q_r . [8]

2 of 2

www.ManaResults.co.in

|"|"||"||"||||

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017

HVAC AND DC TRANSMISSION

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

[8]

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	What are the various types of conductor vibrations in a transmission line?	[4]
	b)	Derive the relation between single-phase and 3-phase audible noise levels.	[4]
	c)	Give the applications of HVDC transmission systems.	[4]
	d)	What is the principal of HVDC Link control?	[3]
	e)	What is the need of reactive power control in HVDC power stations?	[3]
	f)	Discuss the effect of pulse number on harmonics.	[4]

$\underline{PART-B} (3x16 = 48 Marks)$

- 2. a) Derive the Magnoldt formula for the calculation of maximum surface voltage gradient on the high voltage lines. [9]
 - b) A Moose conductor has the following details—Outer dia = 31.8 mm. Area = 515.7 mm². Calculate the resistance of 1 km of a double-Moose bundled conductor at 50°C given that $\rho_a = 2.7 \times 10^{-8}$ ohm-m at 20°C and temperature resistance coefficient of A1= 4.46 × 10⁻³/°C. (Increase length by 5% for stranding.) [7]
- 3. a) List out different corona loss formulae available for calculation of corona loss and explain them briefly.
 - b) An overhead conductor of 1.6 cm radius is 10 m above ground. The normal voltage is 133 kV r.m.s. to ground (230 kV, line-to-line). The switching surge experienced is 3.5 p.u. Taking experimental factor, K = 0.7, calculate the energy loss per km of line. Assume smooth conductor. [8]
- Discuss the economic and technical advantages of HVDC transmission over 4. a) EHVAC for transmitting bulk power from point to point based on Insulation requirements and stability. [9] b) Discuss about back to back HVDC link. How does it compare with other types? [7] Explain the following firing angle control schemes: (i) Individual Phase Control 5. a) (IPC) (ii) Equidistant Pulse control (EPC). [8] b) Explain clearly the procedure for start up of a DC link with both long-pulse and short- pulse firing. [8] 6. a) What are the various types of AC filters employed in HVDC and discuss any two filters in detail? [8] Describe the method of Compensation of reactive power in HVDC substation. b) Draw simple single line schematics for each. [8]

^{1 of 2} www.ManaResults.co.in

|"|"||"||

R13

Set No. 3

- 7. a) What do you understand by characteristic and non characteristic harmonics in HVDC System? [8]
 - b) Show that lowest current harmonic generated in a 6-pulse Graetz converter is of the order 5th and its magnitude is 1/5th of the fundamental. Mention the assumptions made.

Set No. 4

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 HVAC AND DC TRANSMISSION (Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	How to calculate the surface voltage gradient on bundled conductors.	[4]
	b)	The audible noise level of one phase of a 3-phase transmission line at a point is	
		50 dB. Calculate (i) the Sound Pressure Level (SPL) in Pascals; (b) if a second	
		source of noise contributes 48 dB at the same location, calculate the combined	
		AN level due to the two sources.	[4]
	c)	Write the demerits of monopolar, bipolar and homopolar DC links.	[4]
	d)	Why reverse power flow is needed in HVDC system.	[3]
	e)	What is the role of shunt capacitors in HVDC transmission?	[3]
	f)	Explain the significance of AC filters in HVDC system.	[4]

<u>PART-B</u> (3x16 = 48 Marks)

2.	a)	Discuss the charge-potential relations in multi-conductor lines.	[8]
	b)	The configuration of some EHV lines for 400 kV to 1200 kV is given. Calculate r_{eq} of each.	
		(i) 400 kV:N=2, d=2r=3.18 cm, B=45 cm (ii) 750 kV: N=4, d=3.46 cm, B=45 cm (iii) 1000 kV: N=6, d=4.6 cm, B=12 d (iv) 1200 kV: N=8, d=4.6 cm, R=0.6 m	[8]
3.	a)	Discuss the frequency spectrum of the radio interference field produced in an EHV line.	[8]
	b)	A single conductor 6.35 cm in diameter of a 525-kV line (line-to-line voltage) is strung 13 m above ground. Calculate (i) the corona-inception voltage and (ii) the effective radius of conductor at an overvoltage of 2.5 p.u. Consider a stranding factor $m = 1.25$ for roughness. (<i>iii</i>) Calculate the capacitance of conductor to ground with and without corona. Take $\delta = 1$.	[8]
4.	a)	Compare the power transfer capacities of HVAC and HVDC transmission systems when an existing HVAC line is converted into HVDC line, with following conditions: (i) Same current and insulating level (ii) Same percentage	
		losses and insulation level.	[10]
	b)	Explain about apparatus required for HVDC Systems.	[6]

- 5. a) With block diagram, explain the hierarchical control structure for a DC link. [8]
 - b) Explain the working of a Graetz circuit with the help of neat schematic and relevant waveforms. Show that its aggregate valve rating is 2.094 P_d, where P_d is dc power.

|"|"||"||"|||

R13

6.	a)	Plot the characteristics which show the variation of reactive power as a function	
		of active power and also develop the equations for them?	[8]
	b)	A back to back HVDC link with one bridge at each end is transmitting 100 MW	
		with $V_d = 100$ kV. If $\alpha = 15^0$, $\gamma = 18^0$, find ideal no-load direct voltage of	
		rectifier (V_{dor}), ideal no- load direct voltage of inverter (V_{doi}), reactive power	
		Q_r and Q_i . Assume R_{cr} and $R_{ci} = 12\Omega$. Also if the DC link is controlled such that	
		Q_i is kept at a value calculated earlier find V_d , I_d , Q_r , α and γ for P_d =50 MW.	[8]

7.	Give a detailed account of design aspects of the following filters:	
	(a) Single tuned filter	
	(b) Double tuned filter.	[16]

|"|"||"||"|||