Code No: **RT41082**

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 **CHEMICAL ENGINEERING PLANT DESIGN**

(Chemical Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

l.	a)	Enunciate the criteria for optimum design of a chemical process plant.	[4]
	b)	Draw the symbols used in PFD and PID for the following: Heater, Jacketed &	
		Agitated vertical reactor, All control valves, pressure controller.	[4]
	c)	What is the criteria for selection of vacuum equipment?	[4]
	d)	What is dirt factor and its significance in thermal design of shell and tube heat	
		exchangers?	[3]
	e)	Write down the steps involved in the design of a packed column.	[4]
	f)	Sketch a schematic for recycle reactors.	[3]

<u>PART-B</u> (3x16 = 48 Marks)

2.	a)	What are the process design steps for implementing a chemical process commercially?	[8]
	0)	Present a check list for a typical chemical process plant layout.	[o]
3.	a) b)	Classify and discuss various types of process designs. Distinguish between process flow diagrams and piping and instrumentation	[8]
	0)	diagrams with examples.	[8]
4.	a) b)	Write down the design criteria of centrifugal pumps. Calculate insulation thickness (minimum value) required for a pipe carrying steam at 180 ^o C. The pipe size is 8" and the maximum allowable temperature of outer wall insulation is 50 ^o C. Thermal conductivity of the insulation material for the temperature range of the pipe can be taken as 0.04 W/m.K. The heat loss	[8]
		form steam per meter of pipe length has to be limited to 80 W/m.	[8]
5.	a)	With the help of a flow chart, describe the design of a shell and tube heat exchanger by Kern method.	[8]
	b)	45,000 kg/hr of mixed light hydrocarbon vapors are condensed at 10 bar. The saturated vapor will enter the condenser at 60° C and the condensation will be complete at 45° C. Enthalpy of vapor is 596.5 kJ/kg and the condensate 247.9 kJ/kg. Cooling water is available at 30° C and the temperature rise is to be limited to 10° C. Calculate the cooling water flow (Specific heat of water= 4.18 kJ/kg $^{\circ}$ C)	[8]
6.	a)	Discuss the criteria for selection of liquid-liquid extractors.	[8]

6. a) Discuss the criteria for selection of liquid-liquid extractors.

1 of 2 www.ManaResults.co.in

R13

Set No. 1

R13

Code No: **RT41082**

b)

A saturated liquid mixture of acetone and water contains 55 mole % acetone and 45 mole% water is to be separated by distillation at 1 atm. The desired top and bottom product compositions are 96 mole% acetone and 2.5 mole% acetone respectively. The operating reflux ratio is to be employed is 1.5. The column will

have a total condenser and partial reboiler.

Determine total theoretical plates required to effect this separation using McCabe-Thiele method and locate the feed plate.

Equilibrium data for acetone – water mixtures at 1 atm are given below:

(x = mole fraction of acetone in liquid and y = mole fraction of acetone in vapor									
х	0.0	0.05	0.10	0.20	0.30	0.40	0.50		
V	0.0	0.638	0.730	0 791	0.812	0.827	0.830		

у	0.0	0.638	0.730	0.791	0.812	0.827	0.839
Х	0.60	0.70	0.80	0.90	0.95	1.0	
у	0.853	0.871	0.895	0.933	0.963	1.0	

- 7. a) Classify the reactors with neat sketches giving industrial examples.
 - b) Butyl acetate formation is carried out in a batch reactor at 90^oC with sulfuric acid as a homogeneous catalyst. The feed contained 4.97 moles of n-butanol per mole of acetic acid and catalyst concentration is 0.032% by mass as H₂SO₄. Rate equation for this reaction is $-r_A = kC_A^2$ where $C_A =$ concentration of acetic acid in mole/cm² and k = 17.4 cm³/ (mol-min). Density of reaction mixture at 90^oC can be assumed constant and equal to 0.75 g/cm³. Calculate the time required to obtain 50% conversion.

[8]

[8]

[8]

Set No. 1