R13

IV B.Tech I Semester Supplementary Examinations, February/March - 2018 PROCESS MODELING AND SIMULATION

(Chemical Engineering)

Time: 3 hours

Max. Marks: 70

Set No. 1

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	Write the total continuity and component continuity of systems.	[3]
	b)	For a perfectly mixed CSTR with following reaction (first order, isothermal)	
		$A \rightarrow B \rightarrow C$,	
		Derive the material balance equations. Write down the unsteady state material balance equations, if the reaction occurs in non-isothermal conditions, where heat	
		needed for endothermic reaction is supplied through electrical coil.	[4]
	c)	Discuss the computational features of direct and iterative methods for the	F 43
	•	solution of linear Simultaneous equations.	[4]
	d)	Use the trapezoidal and simpson's rule for with $\Delta x = 0.2$ to evaluate $\int_0^1 \frac{dx}{x}$ and	[4]
		compare your values with analytical result.	[ד]
	e)	What do you mean by simulation? Explain	[3]
	f)	What are the advantages and disadvantages of non dimensional forms of governing PDE's?	[4]
		PART-B $(3x16 = 48 Marks)$	
2.	a)	Define Lumped parameter model and distributed parameter models with	
		examples.	[8]
	b)	Discuss why modeling assumptions are important in the building of a model.	[8]
3.	a)	Derive modeling equations for batch reactor.	[8]

- b) Present the steady state model of single component vaporizer. [8]
- 4. a) Oxygen is at a temperature of 150 C and pressure of 70 atm. Calculate molar volume from VanderWall's equation using Newton-Raphson method. Present the results for at least 4 iterations and also write the computer program for the solution of the problem. Data: The values of Van der Wall's constants a& b for O₂ are: a =1.360 b= 0.03183 R=0.082 atm ltr/mol K [8]
 - b) With a neat flow chart, discuss the Gauss elimination algorithm. Mention its advantages and limitations. [8]
- 5. a) A metal ball heated to 75 °C is dropped into a water bath maintained at a temperature of 25° C. The cooling rate is given by dT/dt = -0.6 (T-Tw), dT/dtis in °C/min. Calculate the change in temperature of a metal ball as a function of time using Runge Kutta 4th order method up to 5 minutes and also write the computer program. [8]

WWW.MANARESULTS.CO.IN

Code No: **RT41083**

R13

b) For laminar flow, the friction coefficient 'f' is related Reynolds number $f = a Re^b$ Determine a& b by least square fit using following data. Compute deviations at each data point.

ciono al cacin aata	o o nite.				
F	500	1000	1500	2000	
Re	0.0320	0.0160	0.0107	0.008	[8]

6.	a) b)	Explain the simulation of three CSTR;s connected in series under the action of PI controller by giving dynamic equations. * Present the simulation steps for counter current heat exchanger.	[8] [8]
7.	a)	Derive expression for temperature profile in radial direction when the heat transfers through a cylindrical conductor.	[8]
	D)	PDE models.	[8]