Code No: **RT41084**

R13

Set No. 1

IV B.Tech I Semester Supplementary Examinations, February/March - 2018 BIOCHEMICAL ENGINEERING (Chemical Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	 a) b) c) d) e) c) 	Give the classification of microorganisms belonging to the kingdom of Protists What is activation energy? Explain the role of it in enzyme catalyzed reactions Define immobilization. What are the advantages and disadvantages of it? Explain about biosynthesis. Describe the thermal death kinetics of cells.	[4] [3] [4] [4] [4]
	f)	Draw the different diagrams of CSTR designs for enzyme catalyzed reactions.	[3]
2.		$\frac{PART-B}{(3x16 = 48 Marks)}$ Compare Prokaryotic and Eukaryotic cells with neat sketches	[16]
3.	a) b)	Explain in detail the classification of enzymes Derive the M-M equation for enzymatic reaction with a single substrate.	[8] [8]
4.		Explain different methods of enzyme immobilization with the help neat sketches	[16]
5.	a) b)	Explain carbon catabolism with suitable examples Discuss in detail how could the transport of ions and molecules takes place between cell and environment	[8] [8]
6.		Consider a 1000 L CSTF in which biomass is being produced with glucose as the substrate. The microbial system follows a Monod relationship with $\mu_m = 0.45 \text{ h}^{-1}$, $K_s = 2.0 \text{ g/L}$ and yield factor $y_{x/s} = 1.0 \text{ g}$ biomass / g substrate consumed. If normal operation is with a sterile feed containing 20g/L glucose at a rate of 100 L/h.	
		a) What is the specific biomass production rate g/L-h at steady state?b) If recycle is used with a recycle stream of 20 L/h and a recycle biomass concentration is five times as large as that in the reactor exit, what would be the new specific biomass production rate?	[16]
7.	a) b)	Explain the complete analysis of Ideal plug flow reactor Define sterilization and distinguish it from pasteurization. Describe all the methods of air sterilization.	[8] [8]

