Set No. 1

IV B.Tech II Semester Supplementary Examinations, September - 2020 DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	States the sampling theorem.	[3]
	b)	Obtain the z-transform for ramp function.	[3]
	c)	States the controllability in digital control system.	[4]
	d)	Obtain the relationship between z- and s-domain.	[4]
	e)	Derive the transfer function of lead compensator.	[4]
	f)	Obtain the Ackermann's formula for state feedback gain matrix 'K'.	[4]

$\underline{\mathbf{PART}}_{\mathbf{B}} (3x16 = 48 Marks)$

2.	a)	Explain the implementation problems in digital control.	[8]
	b)	Describe the zero order hold with necessary diagrams and equations.	[8]
3.	a)	Determine the Z-transform for the following	[9]

i).
$$F(s) = \frac{8(S+1)}{S(S+2)}$$
 ii). $F(s) = \frac{1}{S^2(S+2)}$ and iii). $f(t) = t \sin \omega t$

b) Determine the inverse Z-transform of
$$\frac{4Z^2 - Z}{Z^3 - 3Z^2 + 7Z - 1}$$
 [7]

- 4. Obtain the state model of the following difference equation. Also determine its [16] state transition matrix y(k+2)+2y(k+1)+3y(k)=u(k+1)+4u(k) Assuming initial conditions are zero.
- 5. a) Explain the mapping between S-plane and Z-plane with necessary diagrams and [8] equations.
 - b) Test the stability conditions of the digital systems that are represented by the [8] characteristic equation $Z^4 4Z^3 + Z^2 3Z + 2 = 0$

1 of 2

["]"]["]["][] www.manaresults.co.in

Code No: **RT42021**

R13

Set No. 1

Design a lag compensator D(z) in ω-plane for the following system to meet the [16] given specifications
Damping ratio is 0.5
Settling time is 1.3 sec
Velocity error constant is 3.0 sec⁻¹

7. Consider the state equation of the system is given by

[16]

$$\dot{x} = Ax + Bu$$

where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & -2 & -3 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

Compute **k** so that the control law u = -kx. place the closed loop poles at $-1 \pm j2$, -3. Given the state variable model of the closed loop system.

["]"]["]["][] www.manaresults.co.in