

4645

BOARD DIPLOMA EXAMINATION, (C-14)

MARCH / APRIL - 2019

DME - V SEMESTER EXAMINATION HEAT POWER ENGINEERING - II

Time: 3 Hours [Total Marks: 80

PART - A

 $3 \times 10 = 30$

Instructions:

- (1) Answer ALL questions.
- (2) Each question carries **THREE** marks.
- (3) Answer should be brief and straight to the point and shall not exceed five simple sentences.
- 1 Define dryness fraction of a vapour with mathematical expression.
- 2 Determine the condition of steam if its pressure is 10 bar and enthalpy is 2700 KJ/Kg.
- 3 Define the terms the mountings and accessories of the boiler.
- 4 Write the differences between fire tube boiler and water tube boiler.
- 5 Define nozzle. List different types of nozzles.
- A steam nozzle is supplied with steam having an initial velocity of 50 m/s. The initial and exit enthalpy conditions are $h_1 = 3100 \text{ KJ/Kg}$ and $h_2 = 2700 \text{ KJ/Kg}$. Neglecting friction. Find the exit velocity of steam.
- 7 Write the differences between impulse and reaction turbines.
- **8** State the functions of governor.
- 9 Distinguish between jet condenser and surface condenser.
- 10 Define the following terms:
 - (a) Condenser efficiency
 - (b) Vacuum efficiency

4645] [Contd...

PART - B $10 \times 5 = 50$

Instructions:

- (1) Answer any **FIVE** questions.
- (2) Each question carries **TEN** marks.
- (3) Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- Calculate the specific entropy of steam at a pressure of 30 bar under the following conditions:
 - (a) Steam is wet.
 - (b) Steam is dry and saturated.
 - (c) Steam is superheated with degree of superheat at 50°C.
- 12 Draw a legible sketch of Cochran boiler with its mountings and describe its working.
- 13 (a) Write the functions of safety valve. List different types of safety valves used in boiler.
 - (b) Draw a legible sketch of bourdon pressure gauge and describe its working.
- Wet steam at 15 bar and dryness fraction of 0.97 is discharged through a convergent divergent.
 - Nozzle to a back pressure of 0.2 bar. If the mass flow rate is 0.55 kg/s. Determine the throat and exit diameters. Assume friction factor 0.88 in the divergent portion of the nozzle.
- 15 (a) Derive an expression for exit velocity of steam through a nozzle.
 - (b) Explain the evaporative surface condenser with a legible sketch.

4645] 2 [Contd...

16 Following observations were made during a trial on a steam condensate:

Barometric pressure = 760 mm of hg

Vacuum reading = 700 mm of hg

Rate of cooling water = 1000 Kg/min.

Inlet temperature of cooling water = 20° C

Outlet temperature of cooling water = 30° C

Quality of steam condensed = 20 Kg/min.

Howell temperature = 32° C

Mean temperature of condensate = 35°C

Determine:

- (i) vacuum efficiency
- (ii) Condenser efficiency
- (iii) Dryness fraction of exhaust steam
- (iv) Sub-cooling of condensate
- (v) Amount of air leakage per kg of steam condensed.

Assume, R for air = 0.287 kJ/kgk and C for water = 4.18 kJ/kgk.

- A delayal steam turbine is supplied with 1 kg steam per sec. from a set of nozzles whose pressure range is 10 bar to 0.2 bar. The nozzle angle is 22° and blade exit angle is 30°. The mean blade speed is 250 m/s. If the nozzle efficiency is 80%, find the
 - (a) Power developed
 - (b) Blade efficiency and
 - (c) Inlet angle of blade
- **18** (a) Explain nozzle control governing of steam turbine.
 - (b) Explain briefly velocity compounding in an impulse turbine.

4645] 3 #